Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 28(3): 772-778, 2017 Mar 18.
Article in Chinese | MEDLINE | ID: mdl-29741002

ABSTRACT

We analyzed the rules of Metasequoia glyptostroboides along with latitude, including leaf length, leaf width, leaf perimeter, leaf area, ratio of leaf length to width, specific leaf area (SLA), and leaf dry mass based on eight stands growing at different latitudes in the coastal area of eastern China, as well as their relationships with climatic and soil factors. The results showed that the leaf length, leaf width and leaf perimeter increased with increasing latitude, while the leaf area and SLA firstly increased and then decreased. The mean annual temperature and annual precipitation were the major environmental factors affecting the leaf traits along latitude gradient. With the increase of soil N content, the SLA decreased firstly and then increased, while the leaf mass decreased significantly. With the increase of soil P content, the SLA increased, and the leaf mass decreased significantly.


Subject(s)
Cupressaceae , Plant Leaves , China , Soil , Temperature
2.
Ying Yong Sheng Tai Xue Bao ; 27(7): 2225-2230, 2016 Jul.
Article in Chinese | MEDLINE | ID: mdl-29737130

ABSTRACT

In order to explore the variations in leaf stoichiometry based on the method of forest tree breeding, we determined the leaf carbon (C), nitrogen (N), phosphorus (P) stoichiometry among 29 Quercus acutissima provenances grown at 3 sites. The results indicated that the site (environment) effect was statistically significant on leaf stoichiometry, with 13.2%-66.7% of the total variations accounted for leaf C, N, P, C/N, C/P and N/P, while the provenance effect was insignificant and only accounted for 2.9%-11.0% of total variations for leaf stoichiometry. The leaf N and C/N, N and N/P, P and C/P, P and N/P were significantly correlated, and the common standardized major axis slope was also observed among three sites and two provenance groups. It could be concluded that the leaf stoichiometry of Q. acutissima, was mainly determined by its growing environment, due to the similar C, N and P biochemical pathways at species level. The stable correlation coefficients among sites and provenances implied the coupling ratios of leaf stoichiometry were independent of environment and provenance, which supported the leaf stoichiometric homeostasis.


Subject(s)
Carbon/analysis , Nitrogen/analysis , Phosphorus/analysis , Plant Leaves/chemistry , Quercus/chemistry , Forests , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...