Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 384(6697): eadk9227, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38753786

ABSTRACT

Contemporary materials discovery requires intricate sequences of synthesis, formulation, and characterization that often span multiple locations with specialized expertise or instrumentation. To accelerate these workflows, we present a cloud-based strategy that enabled delocalized and asynchronous design-make-test-analyze cycles. We showcased this approach through the exploration of molecular gain materials for organic solid-state lasers as a frontier application in molecular optoelectronics. Distributed robotic synthesis and in-line property characterization, orchestrated by a cloud-based artificial intelligence experiment planner, resulted in the discovery of 21 new state-of-the-art materials. Gram-scale synthesis ultimately allowed for the verification of best-in-class stimulated emission in a thin-film device. Demonstrating the asynchronous integration of five laboratories across the globe, this workflow provides a blueprint for delocalizing-and democratizing-scientific discovery.

2.
Adv Mater ; 35(6): e2207070, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36373553

ABSTRACT

Conventional materials discovery is a laborious and time-consuming process that can take decades from initial conception of the material to commercialization. Recent developments in materials acceleration platforms promise to accelerate materials discovery using automation of experiments coupled with machine learning. However, most of the automation efforts in chemistry focus on synthesis and compound identification, with integrated target property characterization receiving less attention. In this work, an automated platform is introduced for the discovery of molecules as gain mediums for organic semiconductor lasers, a problem that has been challenging for conventional approaches. This platform encompasses automated lego-like synthesis, product identification, and optical characterization that can be executed in a fully integrated end-to-end fashion. Using this workflow to screen organic laser candidates, discovered eight potential candidates for organic lasers is discovered. The lasing threshold of four molecules in thin-film devices and find two molecules with state-of-the-art performance is tested. These promising results show the potential of automated synthesis and screening for accelerated materials development.

3.
Science ; 378(6618): 399-405, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36302014

ABSTRACT

General conditions for organic reactions are important but rare, and efforts to identify them usually consider only narrow regions of chemical space. Discovering more general reaction conditions requires considering vast regions of chemical space derived from a large matrix of substrates crossed with a high-dimensional matrix of reaction conditions, rendering exhaustive experimentation impractical. Here, we report a simple closed-loop workflow that leverages data-guided matrix down-selection, uncertainty-minimizing machine learning, and robotic experimentation to discover general reaction conditions. Application to the challenging and consequential problem of heteroaryl Suzuki-Miyaura cross-coupling identified conditions that double the average yield relative to a widely used benchmark that was previously developed using traditional approaches. This study provides a practical road map for solving multidimensional chemical optimization problems with large search spaces.

4.
Acc Chem Res ; 55(17): 2454-2466, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35948428

ABSTRACT

We must accelerate the pace at which we make technological advancements to address climate change and disease risks worldwide. This swifter pace of discovery requires faster research and development cycles enabled by better integration between hypothesis generation, design, experimentation, and data analysis. Typical research cycles take months to years. However, data-driven automated laboratories, or self-driving laboratories, can significantly accelerate molecular and materials discovery. Recently, substantial advancements have been made in the areas of machine learning and optimization algorithms that have allowed researchers to extract valuable knowledge from multidimensional data sets. Machine learning models can be trained on large data sets from the literature or databases, but their performance can often be hampered by a lack of negative results or metadata. In contrast, data generated by self-driving laboratories can be information-rich, containing precise details of the experimental conditions and metadata. Consequently, much larger amounts of high-quality data are gathered in self-driving laboratories. When placed in open repositories, this data can be used by the research community to reproduce experiments, for more in-depth analysis, or as the basis for further investigation. Accordingly, high-quality open data sets will increase the accessibility and reproducibility of science, which is sorely needed.In this Account, we describe our efforts to build a self-driving lab for the development of a new class of materials: organic semiconductor lasers (OSLs). Since they have only recently been demonstrated, little is known about the molecular and material design rules for thin-film, electrically-pumped OSL devices as compared to other technologies such as organic light-emitting diodes or organic photovoltaics. To realize high-performing OSL materials, we are developing a flexible system for automated synthesis via iterative Suzuki-Miyaura cross-coupling reactions. This automated synthesis platform is directly coupled to the analysis and purification capabilities. Subsequently, the molecules of interest can be transferred to an optical characterization setup. We are currently limited to optical measurements of the OSL molecules in solution. However, material properties are ultimately most important in the solid state (e.g., as a thin-film device). To that end and for a different scientific goal, we are developing a self-driving lab for inorganic thin-film materials focused on the oxygen evolution reaction.While the future of self-driving laboratories is very promising, numerous challenges still need to be overcome. These challenges can be split into cognition and motor function. Generally, the cognitive challenges are related to optimization with constraints or unexpected outcomes for which general algorithmic solutions have yet to be developed. A more practical challenge that could be resolved in the near future is that of software control and integration because few instrument manufacturers design their products with self-driving laboratories in mind. Challenges in motor function are largely related to handling heterogeneous systems, such as dispensing solids or performing extractions. As a result, it is critical to understand that adapting experimental procedures that were designed for human experimenters is not as simple as transferring those same actions to an automated system, and there may be more efficient ways to achieve the same goal in an automated fashion. Accordingly, for self-driving laboratories, we need to carefully rethink the translation of manual experimental protocols.


Subject(s)
Algorithms , Laboratories , Humans , Reproducibility of Results
5.
ACS Cent Sci ; 8(1): 122-131, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35106378

ABSTRACT

Self-driving laboratories, in the form of automated experimentation platforms guided by machine learning algorithms, have emerged as a potential solution to the need for accelerated science. While new tools for automated analysis and characterization are being developed at a steady rate, automated synthesis remains the bottleneck in the chemical space accessible to self-driving laboratories. Combining automated and manual synthesis efforts immediately significantly expands the explorable chemical space. To effectively direct the different capabilities of automated (higher throughput and less labor) and manual synthesis (greater chemical versatility), we describe a protocol, the RouteScore, that quantifies the cost of combined synthetic routes. In this work, the RouteScore is used to determine the most efficient synthetic route to a well-known pharmaceutical (structure-oriented optimization) and to simulate a self-driving laboratory that finds the most easily synthesizable organic laser molecule with specific photophysical properties from a space of ∼3500 possible molecules (property-oriented optimization). These two examples demonstrate the power and flexibility of our approach in mixed synthetic planning and optimization and especially in downselecting promising candidates from a large chemical space via an a priori estimation of the synthetic costs.

6.
Lab Chip ; 20(4): 709-716, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31895394

ABSTRACT

High-throughput fluidic technologies have increased the speed and accuracy of fluid processing to the extent that unlocking further gains will require replacing the human operator with a robotic counterpart. Recent advances in chemistry and biology, such as gene editing, have further exacerbated the need for smart, high-throughput experimentation. A growing number of innovations at the intersection of robotics and fluidics illustrate the tremendous opportunity in achieving fully self-driving fluid systems. We envision that the fields of synthetic chemistry and synthetic biology will be the first beneficiaries of AI-directed robotic and fluidic systems, and largely fall within two modalities: complex integrated centralized facilities that produce data, and distributed systems that synthesize products and conduct disease surveillance.


Subject(s)
Robotics , Humans
7.
Nat Commun ; 6: 6415, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25762410

ABSTRACT

Charge transfer states play a crucial role in organic photovoltaics, mediating both photocurrent generation and recombination losses. In this work, we examine recombination losses as a function of the electron-hole spacing in fluorescent charge transfer states, including direct monitoring of both singlet and triplet charge transfer state dynamics. Here we demonstrate that large donor-acceptor separations minimize back transfer from the charge transfer state to a low-lying triplet exciton 'drain' or the ground state by utilizing external pressure to modulate molecular spacing. The triplet drain quenches triplet charge transfer states that would otherwise be spin protected against recombination, and switches the most efficient origin of the photocurrent from triplet to singlet charge transfer states. Future organic solar cell designs should focus on raising the energy of triplet excitons to better utilize triplet charge transfer mediated photocurrent generation or increasing the donor-acceptor spacing to minimize recombination losses.

SELECTION OF CITATIONS
SEARCH DETAIL
...