Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 425(2): 219-24, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-22835933

ABSTRACT

TDP-43 is a DNA/RNA-binding protein associated with different neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-U). Here, the structural and physical properties of the N-terminus on TDP-43 have been carefully characterized through a combination of nuclear magnetic resonance (NMR), circular dichroism (CD) and fluorescence anisotropy studies. We demonstrate for the first time the importance of the N-terminus in promoting TDP-43 oligomerization and enhancing its DNA-binding affinity. An unidentified structural domain in the N-terminus is also disclosed. Our findings provide insights into the N-terminal domain function of TDP-43.


Subject(s)
DNA-Binding Proteins/metabolism , DNA/metabolism , Protein Multimerization , Circular Dichroism , DNA/chemistry , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Humans , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Folding , Protein Structure, Tertiary
2.
Biophys J ; 102(12): 2818-27, 2012 Jun 20.
Article in English | MEDLINE | ID: mdl-22735532

ABSTRACT

In recent years, various folding zones within the ribosome tunnel have been identified and explored through x-ray, cryo-electron microscopy (cryo-EM), and molecular biology studies. Here, we generated ribosome-bound nascent polypeptide complexes (RNCs) with different polyalanine (poly-A) inserts or signal peptides from membrane/secretory proteins to explore the influence of nascent chain compaction in the Escherichia coli ribosome tunnel on chaperone recruitment. By employing time-resolved fluorescence resonance energy transfer and immunoblotting, we were able to show that the poly-A inserts embedded in the passage tunnel can form a compacted structure (presumably helix) and reduce the recruitment of Trigger Factor (TF) when the helical motif is located in the region near the tunnel exit. Similar experiments on nascent chains containing signal sequences that may form compacted structural motifs within the ribosome tunnel and lure the signal recognition particle (SRP) to the ribosome, provided additional evidence that short, compacted nascent chains interfere with TF binding. These findings shed light on the possible controlling mechanism of nascent chains within the tunnel that leads to chaperone recruitment, as well as the function of L23, the ribosomal protein that serves as docking sites for both TF and SRP, in cotranslational protein targeting.


Subject(s)
Escherichia coli Proteins/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptidylprolyl Isomerase/metabolism , Protein Biosynthesis , Protein Folding , Ribosomes/metabolism , Amino Acid Sequence , Fluorescence Resonance Energy Transfer , Membrane Proteins/chemistry , Models, Molecular , Molecular Sequence Data , Poly A/metabolism , Protein Sorting Signals , Protein Structure, Secondary , RNA, Transfer/genetics , RNA, Transfer/metabolism , Signal Recognition Particle/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...