Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 158: 114151, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36565587

ABSTRACT

Endothelial metabolism is a promising target for vascular functional regulation and disease therapy. Glucose is the primary fuel for endothelial metabolism, supporting ATP generation and endothelial cell survival. Multiple studies have discussed the role of endothelial glucose catabolism, such as glycolysis and oxidative phosphorylation, in vascular functional remodeling. However, the role of the first gatekeepers of endothelial glucose utilization, glucose transporters, in the vasculature has long been neglected. Here, this review summarizes glucose transporter studies in vascular research. We mainly focus on GLUT1 and GLUT3 because they are the most critical glucose transporters responsible for most endothelial glucose uptake. Some interesting topics are also discussed, intending to provide directions for endothelial glucose transporter research in the future.


Subject(s)
Glucose Transport Proteins, Facilitative , Glucose , Glucose/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Biological Transport , Glycolysis , Biology
2.
Cardiol Res Pract ; 2020: 7361434, 2020.
Article in English | MEDLINE | ID: mdl-32411450

ABSTRACT

AIM: The slow coronary flow (SCF) phenomenon was characterized by delayed perfusion of epicardial arteries, and no obvious coronary artery lesion in coronary angiography. The prognosis of patients with slow coronary flow was poor. However, there is lack of rapid, simple, and accurate method for SCF diagnosis. This study aimed to explore the utility of plasma choline as a diagnostic biomarker for SCF. METHODS: Patients with coronary artery stenosis <40% evaluated by the coronary angiogram method were recruited in this study and were grouped into normal coronary flow (NCF) and SCF by thrombolysis in myocardial infarction frame count (TFC). Plasma choline concentrations of patients with NCF and SCF were quantified by Ultra Performance Liquid Chromatography Tandem Mass Spectrometry. Correlation analysis was performed between plasma choline concentration and TFC. Receiver operating characteristic (ROC) curve analysis with or without confounding factor adjustment was applied to predict the diagnostic power of plasma choline in SCF. RESULTS: Forty-four patients with SCF and 21 patients with NCF were included in this study. TFC in LAD, LCX, and RCA and mean TFC were significantly higher in patients with SCF in comparison with patients with NCF (32.67 ± 8.37 vs. 20.66 ± 3.41, P < 0.01). Plasma choline level was obviously higher in patients with SCF when compared with patients with NCF (754.65 ± 238.18 vs. 635.79 ± 108.25, P=0.007). Plasma choline level had significantly positive correlation with Mean TFC (r = 0.364, P=0.002). Receiver operating characteristic (ROC) analysis showed that choline with or without confounding factor adjustment had an AUC score of 0.65 and 0.77, respectively. CONCLUSIONS: TFC were closely related with plasma choline level, and plasma choline can be a suitable and stable diagnostic biomarker for SCF.

3.
Mol Med Rep ; 19(3): 2449-2457, 2019 03.
Article in English | MEDLINE | ID: mdl-30747212

ABSTRACT

Vascular endothelial dysfunction is the major contributing factor to hypertension. Endothelial progenitor cells (EPCs) are essential for endogenous vascular endothelial renovation. The activity and number of circulating EPCs are preserved in prehypertensive premenopausal females according to our previous research. However, the changes of EPCs in prehypertensive postmenopausal females are poorly understood, and the mechanisms responsible for the loss of the gender protection advantage of cardiovascular disease remain unexplored. In order to determine the effects of EPCs in prehypertensive postmenopausal females, the number and activity of circulating EPCs were tested in the present study. Next, the function of EPCs secreting nitric oxide (NO), vascular endothelial growth factor (VEGF) and granulocyte­macrophage colony­stimulating factor (GM­CSF), as well as their concentration in the plasma, were measured. The association between flow­mediated dilation (FMD) and EPC secretion was also assessed. Attenuation of proliferation and migration of EPCs was observed in prehypertensive patients in comparison with normotensive subjects. In addition, a reduced NO production secreted by EPCs was detected in prehypertensive patients as compared with that in normotensive patients. There was no significant difference in EPC function between postmenopausal females and age­matched males. Finally, the association between FMD and NO production was validated. Collectively, these data indicated that impaired EPCs mediated vasodilation dysfunction via decreasing NO production. Therefore, EPC function enhancement and NO level augmentation are emerging as novel therapeutic strategies for prehypertension therapy.


Subject(s)
Endothelial Progenitor Cells/pathology , Hypertension/etiology , Hypertension/physiopathology , Nitric Oxide/metabolism , Postmenopause , Vasodilation , Blood Pressure , Cell Movement , Cell Proliferation , Cells, Cultured , Endothelial Progenitor Cells/metabolism , Female , Granulocyte-Macrophage Colony-Stimulating Factor/blood , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Hypertension/blood , Hypertension/metabolism , Male , Middle Aged , Nitric Oxide/blood , Vascular Endothelial Growth Factor A/blood , Vascular Endothelial Growth Factor A/metabolism
4.
J Cell Mol Med ; 23(2): 1164-1173, 2019 02.
Article in English | MEDLINE | ID: mdl-30450725

ABSTRACT

Angiogenesis is critical for re-establishing the blood supply to the surviving myocardium after myocardial infarction (MI) in patients with acute coronary syndrome (ACS). MicroRNAs are recognised as important epigenetic regulators of endothelial function. The aim of this study was to determine the roles of microRNAs in angiogenesis. Eighteen circulating microRNAs including miR-185-5p were differently expressed in plasma from patients with ACS by high-throughput RNA sequencing. The expressional levels of miR-185-5p were dramatically reduced in hearts isolated from mice following MI and cultured human umbilical vein endothelial cells (HUVECs) under hypoxia, as determined by fluorescence in situ hybridisation and quantitative RT-PCR. Evidence from computational prediction and luciferase reporter gene activity indicated that cathepsin K (CatK) mRNA is a target of miR-185-5p. In HUVECs, miR-185-5p mimics inhibited cell proliferations, migrations and tube formations under hypoxia, while miR-185-5p inhibitors performed the opposites. Further, the inhibitory effects of miR-185-5p up-regulation on cellular functions of HUVECs were abolished by CatK gene overexpression, and adenovirus-mediated CatK gene silencing ablated these enhancive effects in HUVECs under hypoxia. In vivo studies indicated that gain-function of miR-185-5p by agomir infusion down-regulated CatK gene expression, impaired angiogenesis and delayed the recovery of cardiac functions in mice following MI. These actions of miR-185-5p agonists were mirrored by in vivo knockdown of CatK in mice with MI. Endogenous reductions of miR-185-5p in endothelial cells induced by hypoxia increase CatK gene expression to promote angiogenesis and to accelerate the recovery of cardiac function in mice following MI.


Subject(s)
Cathepsin K/genetics , MicroRNAs/genetics , Myocardial Infarction/genetics , Recovery of Function/genetics , Acute Coronary Syndrome/genetics , Acute Coronary Syndrome/pathology , Animals , Cell Line , Cell Proliferation/genetics , Down-Regulation/genetics , Endothelial Cells/pathology , Gene Expression/genetics , Human Umbilical Vein Endothelial Cells , Humans , Hypoxia/genetics , Mice , Myocardium/pathology , Myocytes, Cardiac/pathology , RNA, Messenger/genetics , Up-Regulation/genetics
5.
Stem Cells Int ; 2018: 2543847, 2018.
Article in English | MEDLINE | ID: mdl-29760721

ABSTRACT

Endothelial progenitor cells (EPCs) contribute to the endogenous endothelial repair program during hypercholesterolemia. EPC count and migratory and proliferative capacities remain unchanged in the premenopausal female with hypercholesterolemia. However, the changes of count and activity of circulating EPCs in the hypercholesterolemic postmenopausal females are unknown. Here, we find that the migratory and proliferative capacities of circulating EPCs were decreased in patients with hypercholesterolemia versus normocholesterolemia. No significant differences were found between postmenopausal females and age-matched males. NO production showed positive correlation with the activity and count of circulating EPCs in patients with hypercholesterolemia. Flow-mediated dilatation (FMD) is directly interrelated with EPC counts and function. Our findings reveal that decreased EPC count and endothelial dysfunction lead to less NO production in hypercholesterolemic postmenopausal females. Maintaining the EPC numbers and activity might be emerging as a potential therapeutic strategy to reduce the risk of cardiovascular injury in elder women.

6.
Circulation ; 138(4): 397-411, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29431644

ABSTRACT

BACKGROUND: Nitrates are widely used to treat coronary artery disease, but their therapeutic value is compromised by nitrate tolerance, because of the dysfunction of prostaglandin I2 synthase (PTGIS). MicroRNAs repress target gene expression and are recognized as important epigenetic regulators of endothelial function. The aim of this study was to determine whether nitrates induce nitrovasodilator resistance via microRNA-dependent repression of PTGIS gene expression. METHODS: Nitrovasodilator resistance was induced by nitroglycerin (100 mg·kg-1·d-1, 3 days) infusion in Apoe-/- mice. The responses of aortic arteries to nitric oxide donors were assessed in an organ chamber. The expression levels of microRNA-199 (miR-199)a/b were assayed by quantitative reverse transcription polymerase chain reaction or fluorescent in situ hybridization. RESULTS: In cultured human umbilical vein endothelial cells, nitric oxide donors induced miR-199a/b endogenous expression and downregulated PTGIS gene expression, both of which were reversed by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt or silence of serum response factor. Evidence from computational and luciferase reporter gene analyses indicates that the seed sequence of 976 to 982 in the 3'-untranslated region of PTGIS mRNA is a target of miR-199a/b. Gain functions of miR-199a/b resulting from chemical mimics or adenovirus-mediated overexpression increased PTGIS mRNA degradation in HEK293 cells and human umbilical vein endothelial cells. Furthermore, nitroglycerin-decreased PTGIS gene expression was prevented by miR-199a/b antagomirs or was mirrored by the enforced expression of miR-199a/b in human umbilical vein endothelial cells. In Apoe-/- mice, nitroglycerin induced the ectopic expression of miR-199a/b in the carotid arterial endothelium, decreased PTGIS gene expression, and instigated nitrovasodilator resistance, all of which were abrogated by miR-199a/b antagomirs or LNA-anti-miR-199. It is important that the effects of miR-199a/b inhibitions were abolished by adenovirus-mediated PTGIS deficiency. Moreover, the enforced expression of miR-199a/b in vivo repressed PTGIS gene expression and impaired the responses of aortic arteries to nitroglycerin/sodium nitroprusside/acetylcholine/cinaciguat/riociguat, whereas the exogenous expression of the PTGIS gene prevented nitrovasodilator resistance in Apoe-/- mice subjected to nitroglycerin infusion or miR-199a/b overexpression. Finally, indomethacin, iloprost, and SQ29548 improved vasorelaxation in nitroglycerin-infused Apoe-/- mice, whereas U51605 induced nitrovasodilator resistance. In humans, the increased expressions of miR-199a/b were closely associated with nitrate tolerance. CONCLUSIONS: Nitric oxide-induced ectopic expression of miR-199a/b in endothelial cells is required for nitrovasodilator resistance via the repression of PTGIS gene expression. Clinically, miR-199a/b is a novel target for the treatment of nitrate tolerance.


Subject(s)
Aorta/drug effects , Cytochrome P-450 Enzyme System/metabolism , Drug Resistance , Human Umbilical Vein Endothelial Cells/drug effects , Intramolecular Oxidoreductases/metabolism , Nitric Oxide Donors/pharmacology , Nitric Oxide/metabolism , Nitroglycerin/pharmacology , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Animals , Aorta/enzymology , Cytochrome P-450 Enzyme System/genetics , Drug Resistance/genetics , HEK293 Cells , Human Umbilical Vein Endothelial Cells/enzymology , Humans , Intramolecular Oxidoreductases/genetics , Male , Mice, Knockout, ApoE , MicroRNAs/genetics , MicroRNAs/metabolism , Nitric Oxide Donors/metabolism , Nitroglycerin/metabolism , Signal Transduction/drug effects , Up-Regulation , Vasodilator Agents/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...