Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
J Am Coll Cardiol ; 84(12): 1092-1103, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39260931

ABSTRACT

BACKGROUND: B-type natriuretic peptide or N-terminal pro-B-type natriuretic peptide is the only blood biomarker in established risk calculators for pulmonary arterial hypertension (PAH). Profiling systemic-originated plasma immunoglobulin G (IgG) N-glycans, which reflect different components of the pathophysiology of PAH including immune dysregulation and inflammation, may improve PAH risk assessment. OBJECTIVES: This study sought to identify plasma IgG N-glycan biomarkers that predict survival in PAH to improve risk assessment. METHODS: This cohort study examined 622 PAH patients from 2 national centers (Beijing [discovery] cohort: n = 273; Shanghai [validation] cohort: n = 349). Plasma IgG N-glycomes were profiled by a robust mass spectrometry-based method. Prognostic IgG N-glycan traits were identified and validated in the 2 cohorts using Cox regression and Kaplan-Meier survival analyses. The added value of IgG N-glycan traits to previously established risk models was assessed using Harrell C-indexes and survival analysis. RESULTS: Plasma IgG fucosylation was found to predict survival independent of age and sex in the discovery cohort (HR: 0.377; 95% CI: 0.168-0.845; P = 0.018) with confirmation in the validation cohort (HR: 0.445; 95% CI: 0.264-0.751; P = 0.005). IgG fucosylation remained a robust predictor of mortality in combined cohorts after full adjustment and in subgroup analyses. Integrating IgG fucosylation into previously established risk models improved their predictive capacity, marked by an overall elevation in Harrell C-indexes. IgG fucosylation was useful in further stratifying the intermediate-risk patients classified by a previously established model. CONCLUSIONS: Plasma IgG fucosylation informs PAH prognosis independent of established factors, offering additional value for predicting PAH outcomes.


Subject(s)
Biomarkers , Immunoglobulin G , Humans , Female , Male , Immunoglobulin G/blood , Middle Aged , Prognosis , Biomarkers/blood , Adult , Pulmonary Arterial Hypertension/blood , Pulmonary Arterial Hypertension/mortality , Cohort Studies , Polysaccharides/blood , Aged , Risk Assessment/methods , China/epidemiology
2.
Front Pharmacol ; 15: 1437738, 2024.
Article in English | MEDLINE | ID: mdl-39193349

ABSTRACT

Introduction: Elevated glucagon levels are a characteristic feature of type 2 diabetes. This abnormal increase in glucagon can lead to an accelerated rate of gluconeogenesis. Glucagon also stimulates hepatic metabolism of amino acids, particularly promoting the formation of urea. The specific role of carbamoyl phosphate synthetase 1 (CPS1), a rate-limiting enzyme in the urea cycle, in the development versus the persistence of glucagon-induced hyperglycemia has not been previously established. Methods: The study employed both in vivo and in vitro approaches to assess the impact of CPS1 modulation on glucagon response. CPS1 was knockdown or overexpression to evaluate its influence on hepatic gluconeogenesis. In addition, an in-silico strategy was employed to identify a potential CPS1 inhibitor. Results: Knockdown of CPS1 significantly reduced the glucagon response both in vivo and in vitro. Conversely, overexpression of CPS1 resulted in an overactive hepatic gluconeogenic response. Mechanistically, CPS1 induced the release of calcium ions from the endoplasmic reticulum, which in turn triggered the phosphorylation of CaMKII. The activation of CaMKII then facilitated the dephosphorylation and nuclear translocation of FOXO1, culminating in the enhancement of hepatic gluconeogenesis. Furthermore, cynarin, a natural CPS1 inhibitor derived from the artichoke plant, had the capacity to attenuate the hepatic glucagon response in a CPS1-dependent manner. Discussion: CPS1 played a pivotal role in mediating glucagon-induced hepatic gluconeogenesis. The discovery of cynarin as a natural inhibitor of CPS1 suggested its potential as a therapeutic agent for diabetes treatment.

3.
Nanomaterials (Basel) ; 14(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39120386

ABSTRACT

Nano-hydroxyapatite (nHA) demonstrates favorable biological activity, cell adhesion, cell proliferation, and osteoconductivity, making it highly valuable in biomedicine. It is extensively used as a bone substitute and in bone transplantation within the dental and orthopedic fields. This study employed oyster shells as a calcium source to synthesize nHA at 150 °C with various hydrothermal reaction durations (10 min, 1 h, 6 h, and 12 h). As a control, HA synthesized via a wet precipitation method for 1 h at room temperature was utilized. Subsequent material analyses, including XRD, FE-SEM, FTIR, and ICP-MS, were conducted, followed by comprehensive evaluations of the bioactivity, cell attachment, cell proliferation, and sintering properties of the synthesized nHA. The results indicated that nHA synthesized through the hydrothermal reaction produced nanoscale crystals, with the aspect ratio of nHA particles increasing with the duration of hydrothermal treatment. Notably, rod-like nHA particles became prominent with hydrothermal durations exceeding 6 h. nHA particles derived from oyster shells contained carbonate and trace elements (Na, Mg, K, and Sr), similar to constituents found in human hard tissue such as bone and teeth. The immersion of nHA synthesized at 150 °C for 1 h (HT2) in simulated body fluid (SBF) for 28 d led to the formation of a bone-like apatite layer on the surface, indicating the excellent bioactivity of the synthesized nHA. The cell culture results revealed superior cell attachment and proliferation for nHA (HT2). Following the sequential formation and sintering at 1200 °C for 4 h, HT2 ceramics exhibited enhanced microhardness (5.65 GPa) and fracture toughness (1.23 MPa·m0.5), surpassing those of human tooth enamel.

4.
J Hypertens ; 42(10): 1703-1710, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38860405

ABSTRACT

OBJECTIVE: Pulmonary hypertension is a severe complication of bronchiectasis, characterized by elevated pulmonary vascular resistance (PVR) and subsequent right heart failure. The association between PVR and mortality in bronchiectasis-associated pulmonary hypertension has not been investigated previously. METHODS: In the present study, a retrospective analysis was conducted on 139 consecutive patients diagnosed with bronchiectasis-associated pulmonary hypertension based on right heart catheterization, enrolled between January 2010 and June 2023. Baseline clinical characteristics and hemodynamic assessment were analyzed. The survival time for each patient was calculated in months from the date of diagnosis until the date of death or, if the patient was still alive, until their last visit. RESULTS: Patients with bronchiectasis-associated pulmonary hypertension exhibited estimated survival rates of 89.5, 70, and 52.9 at 1-year, 3-year, and 5-year intervals respectively, with a median survival time of 67 months. Multivariable Cox regression analysis revealed that increased age [(adjusted hazard ratio per year 1.042, 95% confidence interval (CI) 1.008-1.076, P  = 0.015] and elevated PVR (adjusted HR per 1 Wood Units 1.115, 95% CI 1.015-1.224, P  = 0.023) were associated with an increased risk of all-cause mortality. In contrast, higher BMI was associated with a decreased risk of all-cause death (adjusted hazard ratio per 1 kg/m 2 0.915, 95% CI 0.856-0.979, P  = 0.009). Receiver-operating characteristic analyses identified a cutoff value for PVR at 4 Wood Units as predictive for all-cause death within 3 years [area under the curve (AUC) = 0.624; specificity= 87.5%; sensitivity= 35.8%; P  < 0.05]. Patients with a PVR greater than 4 Wood Units had a significantly higher risk of all-cause death compared with those with 4 Wood Units or less (adjusted hazard ratio 2.392; 95% CI 1.316-4.349; P  = 0.019). Notably, there were no significant differences in age, sex, BMI, WHO functional class, 6-min walk distance, and NT-proBNP levels at baseline between patients categorized as having 4 Wood Units or less or greater than 4 Wood Units for PVR. CONCLUSION: Based on these data, PVR could serve as a discriminative marker for distinguishing between nonsevere pulmonary hypertension (PVR ≤ 4 Wood Units) and severe pulmonary hypertension (PVR > 4 Wood Units). The utilization of a PVR cutoff value of 4.0 Wood Units provides enhanced prognostic capabilities for predicting mortality.


Subject(s)
Bronchiectasis , Hypertension, Pulmonary , Vascular Resistance , Humans , Male , Female , Bronchiectasis/mortality , Bronchiectasis/complications , Bronchiectasis/physiopathology , Middle Aged , Retrospective Studies , Hypertension, Pulmonary/mortality , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/complications , Aged , Prognosis , Cardiac Catheterization
5.
J Vis Exp ; (206)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38738896

ABSTRACT

Compared to filiform needle therapy, fire-needle therapy has both the stimulation of needles and the warming effect of heat, making it have unexpected effects on some chronic diseases and incurable diseases. Osteoporosis (OP) has a high incidence in postmenopausal women and middle-aged and elderly men, and the treatment cycle is long. According to Traditional Chinese Medicine (TCM), Lingnan fire-needle therapy has shown potential in treating osteoporosis. However, there is still a long way to go before it can be widely used. This article focuses on the application of Lingnan fire-needle therapy in the intervention of OP in rats. It covers the selection of needle tools, acupuncture point selection, positioning of rats' bodies, and fixation methods. We also outline the steps and precautions to be taken during and after needling with fire needles. The experiment was done with three groups: a normal group, a model group, and a fire-needle group, each containing 10 rats. The rats in the fire-needle group were treated with fire-needle intervention for six sessions. After the intervention period, we collected femoral specimens and performed micro-CT scans. The results suggest that fire needling can enhance bone morphology and mineral density in OP rats. This information can serve as a methodological basis for conducting basic research on fire-needle therapy.


Subject(s)
Acupuncture Therapy , Disease Models, Animal , Osteoporosis , Animals , Rats , Osteoporosis/therapy , Female , Acupuncture Therapy/methods , Acupuncture Therapy/instrumentation , Rats, Sprague-Dawley , Needles , Medicine, Chinese Traditional/methods , Male
6.
Circulation ; 150(4): 302-316, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38695173

ABSTRACT

BACKGROUND: The ubiquitin-proteasome system regulates protein degradation and the development of pulmonary arterial hypertension (PAH), but knowledge about the role of deubiquitinating enzymes in this process is limited. UCHL1 (ubiquitin carboxyl-terminal hydrolase 1), a deubiquitinase, has been shown to reduce AKT1 (AKT serine/threonine kinase 1) degradation, resulting in higher levels. Given that AKT1 is pathological in pulmonary hypertension, we hypothesized that UCHL1 deficiency attenuates PAH development by means of reductions in AKT1. METHODS: Tissues from animal pulmonary hypertension models as well as human pulmonary artery endothelial cells from patients with PAH exhibited increased vascular UCHL1 staining and protein expression. Exposure to LDN57444, a UCHL1-specific inhibitor, reduced human pulmonary artery endothelial cell and smooth muscle cell proliferation. Across 3 preclinical PAH models, LDN57444-exposed animals, Uchl1 knockout rats (Uchl1-/-), and conditional Uchl1 knockout mice (Tie2Cre-Uchl1fl/fl) demonstrated reduced right ventricular hypertrophy, right ventricular systolic pressures, and obliterative vascular remodeling. Lungs and pulmonary artery endothelial cells isolated from Uchl1-/- animals exhibited reduced total and activated Akt with increased ubiquitinated Akt levels. UCHL1-silenced human pulmonary artery endothelial cells displayed reduced lysine(K)63-linked and increased K48-linked AKT1 levels. RESULTS: Supporting experimental data, we found that rs9321, a variant in a GC-enriched region of the UCHL1 gene, is associated with reduced methylation (n=5133), increased UCHL1 gene expression in lungs (n=815), and reduced cardiac index in patients (n=796). In addition, Gadd45α (an established demethylating gene) knockout mice (Gadd45α-/-) exhibited reduced lung vascular UCHL1 and AKT1 expression along with attenuated hypoxic pulmonary hypertension. CONCLUSIONS: Our findings suggest that UCHL1 deficiency results in PAH attenuation by means of reduced AKT1, highlighting a novel therapeutic pathway in PAH.


Subject(s)
Mice, Knockout , Proto-Oncogene Proteins c-akt , Ubiquitin Thiolesterase , Animals , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/deficiency , Ubiquitin Thiolesterase/metabolism , Humans , Mice , Rats , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Male , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/genetics , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/enzymology , Rats, Sprague-Dawley , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/etiology , Vascular Remodeling , Cells, Cultured , Cell Proliferation , Mice, Inbred C57BL , Indoles , Oximes
7.
Intern Med J ; 54(8): 1292-1301, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38563467

ABSTRACT

BACKGROUND AND AIMS: Sleep-disordered breathing (SDB) and nocturnal hypoxemia were known to be present in patients with chronic thromboembolic pulmonary hypertension (CTEPH), but the difference between SDB and nocturnal hypoxemia in patients who have chronic thromboembolic pulmonary disease (CTEPD) with or without pulmonary hypertension (PH) at rest remains unknown. METHODS: Patients who had CTEPH (n = 80) or CTEPD without PH (n = 40) and who had undergone sleep studies from July 2020 to October 2022 at Shanghai Pulmonary Hospital were enrolled. Nocturnal mean SpO2 (Mean SpO2) <90% was defined as nocturnal hypoxemia, and the percentage of time with a saturation below 90% (T90%) exceeding 10% was used to evaluate the severity of nocturnal hypoxemia. Logistic and linear regression analyses were performed to investigate the difference and potential predictor of SDB or nocturnal hypoxemia between CTEPH and CTEPD without PH. RESULTS: SDB was similarly prevalent in CTEPH and CTEPD without PH (P = 0.104), both characterised by obstructive sleep apnoea (OSA). Twenty-two patients with CTEPH were diagnosed with nocturnal hypoxemia, whereas only three were diagnosed with CTEPD without PH (P = 0.021). T90% was positively associated with mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance in patients with CTEPH and CTEPD without PH (P < 0.001); T90% was also negatively related to cardiac output in these patients. Single-breath carbon monoxide diffusing capacity, sex and mPAP were all correlated with nocturnal hypoxemia in CTEPH and CTEPD without PH (all P < 0.05). CONCLUSION: Nocturnal hypoxemia was worse in CTEPD with PH; T90%, but not SDB, was independently correlated with the hemodynamics in CTEPD with or without PH.


Subject(s)
Hypertension, Pulmonary , Hypoxia , Pulmonary Embolism , Sleep Apnea Syndromes , Humans , Female , Male , Middle Aged , Hypoxia/etiology , Pulmonary Embolism/complications , Pulmonary Embolism/physiopathology , Aged , Sleep Apnea Syndromes/complications , Sleep Apnea Syndromes/physiopathology , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/complications , Chronic Disease , China/epidemiology , Polysomnography
8.
Front Immunol ; 14: 1197752, 2023.
Article in English | MEDLINE | ID: mdl-37731513

ABSTRACT

Pulmonary fibrosis (PF) and pulmonary hypertension (PH) have common pathophysiological features, such as the significant remodeling of pulmonary parenchyma and vascular wall. There is no effective specific drug in clinical treatment for these two diseases, resulting in a worse prognosis and higher mortality. This study aimed to screen the common key genes and immune characteristics of PF and PH by means of bioinformatics to find new common therapeutic targets. Expression profiles are downloaded from the Gene Expression Database. Weighted gene co-expression network analysis is used to identify the co-expression modules related to PF and PH. We used the ClueGO software to enrich and analyze the common genes in PF and PH and obtained the protein-protein interaction (PPI) network. Then, the differential genes were screened out in another cohort of PF and PH, and the shared genes were crossed. Finally, RT-PCR verification and immune infiltration analysis were performed on the intersection genes. In the result, the positive correlation module with the highest correlation between PF and PH was determined, and it was found that lymphocyte activation is a common feature of the pathophysiology of PF and PH. Eight common characteristic genes (ACTR2, COL5A2, COL6A3, CYSLTR1, IGF1, RSPO3, SCARNA17 and SEL1L) were gained. Immune infiltration showed that compared with the control group, resting CD4 memory T cells were upregulated in PF and PH. Combining the results of crossing characteristic genes in ImmPort database and RT-PCR, the important gene IGF1 was obtained. Knocking down IGF1 could significantly reduce the proliferation and apoptosis resistance in pulmonary microvascular endothelial cells, pulmonary smooth muscle cells, and fibroblasts induced by hypoxia, platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-ß1 (TGF-ß1), respectively. Our work identified the common biomarkers of PF and PH and provided a new candidate gene for the potential therapeutic targets of PF and PH in the future.


Subject(s)
Hypertension, Pulmonary , Pulmonary Fibrosis , Humans , Pulmonary Fibrosis/genetics , Hypertension, Pulmonary/genetics , Endothelial Cells , Genes, Regulator , Computational Biology , Proteins
9.
Int J Surg ; 109(11): 3294-3302, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37462996

ABSTRACT

AIM: The aim was to compare short-term and long-term oncological outcomes between minimally invasive surgery (MIS group) and laparotomy (lap group) in nonmetastatic pT4a colorectal cancer (CRC). MATERIALS AND METHODS: The study retrospectively analyzed the outcomes of 634 patients treated with radical operation from January 2015 to December 2021 for nonmetastatic pT4a CRC, with propensity score matching. RESULTS: The conversion rate from the MIS group to laparotomy is 3.5%. Intraoperative blood loss, time to first anal exhaust, defecation and drainage tube removal, and complication rate were significantly less in the MIS group. After 5 years, the outcomes of the MIS group were no inferior to laparotomy outcomes [overall survival (OS): 72.7 vs. 77.8%, P =0.285; disease-free survival (DFS): 72.2 vs. 75.0%, P =0.599]. And multivariate analysis showed that age greater than or equal to 60 years old, lymph node metastasis and the carcinoembryonic antigen levels were independent variables for OS, while lymph node metastasis and CA125 levels were independent variables for DFS. The results of the graph show the relationship between the sum of scores of sex, age, complications, BMI, carcinoembryonic antigen, age, CA125, tumor site, N stage and tumor length diameter and 1-year, 3-year, and 5-year mortality and DFS of patients. Among them, tumor length diameter and N stage are significantly correlated with long-term survival and disease-free of patients. CONCLUSION: MIS is safe and feasible for nonmetastatic pT4a CRC, with the added benefit of accelerated postoperative recovery. In oncology, MIS did not affect OS and DFS.


Subject(s)
Colorectal Neoplasms , Laparoscopy , Humans , Carcinoembryonic Antigen , Retrospective Studies , Laparotomy/adverse effects , Laparotomy/methods , Propensity Score , Lymphatic Metastasis , Minimally Invasive Surgical Procedures/adverse effects , Minimally Invasive Surgical Procedures/methods , Colorectal Neoplasms/surgery , Treatment Outcome , Laparoscopy/methods
10.
Front Cardiovasc Med ; 9: 976730, 2022.
Article in English | MEDLINE | ID: mdl-36578835

ABSTRACT

Objective: Whether exercise-induced venous-to-systemic shunt (EIS) during cardiopulmonary exercise testing (CPET) has different manifestations or characteristics in idiopathic pulmonary arterial hypertension (IPAH) and chronic thromboembolic pulmonary hypertension (CTEPH) patients remains unknown. We explored the differences in hemodynamics, echocardiography, and prognosis between IPAH and CTEPH patients with and without EIS. Methods: We conducted a retrospective cross-sectional cohort study and included 161 PH patients at Shanghai Pulmonary Hospital. Demographic, echocardiography, pulmonary hemodynamic, and CPET variables were compared between patients with and without EIS stratified by IPAH and CTEPH. EIS was determined by CPET. Binary logistic regression analyses were performed to explore independent influencing factors of EIS. Cox survival analysis was used to quantify the impact of EIS on the prognosis of patients. Results: Exercise-induced venous-to-systemic shunt was found in approximately 17.4% of 86 IPAH patients and 20% of 75 CTEPH patients. All-cause mortality occurred in 43 (26.7%) patients during a median follow-up of 6.5 years. Compared with those without EIS, patients with EIS had higher peak end-tidal O2 and lower VO2/VE and tricuspid annular plane systolic excursion (TAPSE). Among the IPAH patients, EIS was associated with lower cardiac output, cardiac index, mixed venous oxygen saturation, VO2/VE, and TAPSE and higher VE/VCO2 and right ventricular end-diastolic transverse diameter. Logistic regression analysis indicated that VO2/VE was an independent factor influencing whether IPAH patients developed EIS during CPET. Cox logistic regression indicated that female IPAH patients or IPAH patients with higher VO2/VE and EIS had a better prognosis. Female IPAH patients had better 10-year survival. In IPAH patients without EIS, patients with higher VO2/VE had better 10-year survival. However, compared with CTEPH patients without EIS, those with EIS had similar echocardiographic, hemodynamic, CPET parameter results and 10-year survival. Conclusion: Exercise-induced venous-to-systemic shunt exhibits different profiles among IPAH and CTEPH patients. Among IPAH patients, those with EIS had worse peak end-tidal O2, VO2/VE, and TAPSE than those without EIS. VO2/VE was an independent factor of EIS among IPAH patients. IPAH patients with EIS, female sex or higher VO2/VE had better survival. However, the association between EIS and PAH severity or prognosis in CTEPH patients needs to be further explored.

11.
Front Cardiovasc Med ; 9: 977110, 2022.
Article in English | MEDLINE | ID: mdl-36568539

ABSTRACT

Background: There is little evidence of the effectiveness of switching from the endothelin receptor antagonists (ERAs) bosentan and ambrisentan to a novel ERA, macitentan, in patients with pulmonary arterial hypertension (PAH). Therefore, a systematic review and meta-analysis was performed to evaluate the efficacy and safety of patients with PAH switching from other ERAs to macitentan. Methods: We retrieved the relevant literature published before January 2022 for the meta-analysis from the PubMed, EMBASE, and Cochrane Library databases. Efficacy included changes in the 6-min walk distance (6MWD), World Health Organization functional class (WHO-FC), N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, hemodynamics, echocardiography and survival. Results: Nine studies, consisting of 408 PAH patients, that met the inclusion criteria were included. The switch from bosentan or ambrisentan to macitentan effectively increased the 6MWD by 20.71 m (95% CI: 10.35-31.07, P < 0.00001, I 2 = 0%). Six months after conversion, the tricuspid annular plane systolic excursion was found to improve from 19.0 ± 4.0 to 21.0 ± 5.0 mm in adults and from 16.00 ± 5.0 to 18.25 ± 4.8 mm in children. Ordinal logistic regression showed that the WHO-FC significantly improved by 0.412 (95% CI: 0.187-0.908, P = 0.028). The switch did not show significant improvement in NT-proBNP levels. In addition, the switch was well tolerated. Conclusion: The switch from bosentan or ambrisentan to macitentan significantly increased the 6MWD in PAH patients, improved the WHO-FC, and exerted safety benefits. The effects of the switch on NT-proBNP levels, hemodynamics, and echocardiography still need to be further confirmed. Systematic review registration: [https://www.crd.york.ac.uk/prospero/], identifier [CRD42021292554].

12.
Front Cardiovasc Med ; 9: 966973, 2022.
Article in English | MEDLINE | ID: mdl-36324750

ABSTRACT

Objective: Although chronic thromboembolic pulmonary hypertension (CTEPH) and chronic thromboembolic pulmonary disease (CTEPD) are known to be accompanied by symptoms associated with sleep-disordered breathing (SDB) and nocturnal hypoxemia, the sex-specific differences of SDB and nocturnal hypoxemia in patients with CTEPH and CTEPD remain unknown. Methods: Between July 2020 and August 2022, data were retrieved from 57 males and 63 female patients with CTEPH and CTEPD who underwent sleep study at Shanghai Pulmonary Hospital. Nocturnal mean SpO2 (mean SpO2) < 90% was defined as nocturnal hypoxemia. Logistic and linear regression analysis was performed to assess the predictive value of sleep study indices to hemodynamic parameters. Receiver operating characteristic (ROC) curve was applied to analyze the specific parameters to predict the risk of CTEPH. Results: SDB was similarly present in males and females, and both sexes predominantly had obstructive sleep apnea (OSA); more women were diagnosed with nocturnal hypoxemia (32 vs. 7%, p = 0.002). SaO2 was negatively associated with mean pulmonary arterial pressure (mPAP) in men (p < 0.001), whereas the ratio of nocturnal SpO2 < 90% of the total monitoring time (T90%) was positively correlated with mPAP. Mean SpO2 was an independent predictor for pulmonary vascular resistance and cardiac output in women (p = 0.001, p < 0.001, p = 0.001, respectively). T90%, SaO2, and minimal SpO2 were combined to develop a new composite parameter: hypoxemia scoring index (HSI). ROC curve analysis indicated that HSI levels of 0.55 could discriminate CTEPH from CTEPD with a sensitivity of 92.3% and specificity of 87.5% in female patients (an area under the curve, 0.937; 95% CI: 0.879-0.995, p < 0.001). Conclusion: Sex-specific nocturnal hypoxemia was present in patients with CTEPH or CTEPD. In female patients, the HSI showed high capacity for predicting the risk of CTEPH. Clinical trials registration: Registry: chictr.org.cn; Identifier: ChiCTR-DDD-16009406.

13.
EBioMedicine ; 86: 104340, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36356476

ABSTRACT

BACKGROUND: Early detection of gastric cancer (GC) remains challenging. We aimed to examine urine proteomic signatures and identify protein biomarkers that predict the progression of gastric lesions and risk of GC. METHODS: A case-control study was initially designed, covering subjects with GC and gastric lesions of different stages. Subjects were aged 40-69 years, without prior diagnosis of renal or urological diseases. We enrolled a total of 255 subjects, with 123 in the discovery stage from Linqu, China, a high-risk area for GC and 132 in the validation stage from Linqu and Beijing. A prospective study was further designed for a subset of 60 subjects with gastric lesions, which were followed for 297-857 days. FINDINGS: We identified 43 differentially expressed urine proteins in subjects with GC vs. mild or advanced gastric lesions. Baseline urinary levels of ANXA11, CDC42, NAPA and SLC25A4 were further positively associated with risk of gastric lesion progression. Three of them, except for SLC25A4, also had higher expression in GC than non-GC tissues. Integrating these four proteins showed outstanding performance in predicting the progression of gastric lesions (AUC (95% CI): 0.92 (0.83-1.00)) and risk of GC (AUC (95% CI): 0.81 (0.73-0.89) and 0.84 (0.77-0.92) for GC vs. mild or advanced gastric lesions respectively). INTERPRETATION: This study revealed distinct urine proteomic profiles and a panel of proteins that may predict the progression of gastric lesions and risk of GC. These biomarkers in a non-invasive approach may have translational significance for defining high-risk populations of GC and its early detection. FUNDING: Funders are listed in the Acknowledgement.


Subject(s)
Precancerous Conditions , Stomach Neoplasms , Humans , Stomach Neoplasms/diagnosis , Stomach Neoplasms/pathology , Proteomics , Case-Control Studies , Prospective Studies , Early Detection of Cancer , Biomarkers , Biomarkers, Tumor
14.
Nat Commun ; 13(1): 6081, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36241632

ABSTRACT

Renal fibrosis is an inevitable outcome of various manifestations of progressive chronic kidney diseases (CKD). The need for efficacious treatment regimen against renal fibrosis can therefore not be overemphasized. Here we show a novel protective role of Bacteroides fragilis (B. fragilis) in renal fibrosis in mice. We demonstrate decreased abundance of B. fragilis in the feces of CKD patients and unilateral ureteral obstruction (UUO) mice. Oral administration of live B. fragilis attenuates renal fibrosis in UUO and adenine mice models. Increased lipopolysaccharide (LPS) levels are decreased after B. fragilis administration. Results of metabolomics and proteomics studies show decreased level of 1,5-anhydroglucitol (1,5-AG), a substrate of SGLT2, which increases after B. fragilis administration via enhancement of renal SGLT2 expression. 1,5-AG is an agonist of TGR5 that attenuates renal fibrosis by inhibiting oxidative stress and inflammation. Madecassoside, a natural product found via in vitro screening promotes B. fragilis growth and remarkably ameliorates renal fibrosis. Our findings reveal the ameliorative role of B. fragilis in renal fibrosis via decreasing LPS and increasing 1,5-AG levels.


Subject(s)
Biological Products , Gastrointestinal Microbiome , Kidney Diseases , Renal Insufficiency, Chronic , Ureteral Obstruction , Adenine/metabolism , Animals , Bacteroides fragilis , Biological Products/metabolism , Disease Models, Animal , Fibrosis , Kidney/metabolism , Kidney Diseases/pathology , Lipopolysaccharides/metabolism , Lipopolysaccharides/toxicity , Mice , Renal Insufficiency, Chronic/pathology , Sodium-Glucose Transporter 2/metabolism , Ureteral Obstruction/metabolism
15.
Theranostics ; 12(10): 4671-4683, 2022.
Article in English | MEDLINE | ID: mdl-35832080

ABSTRACT

Rationale: Gastric cancer (GC) is preceded by a stepwise progression of precancerous gastric lesions. Distinguishing individuals with precancerous gastric lesions that have progression potential to GC is an important need. Perturbated lipid metabolism, particularly the dysregulation of de novo lipogenesis, is involved in gastric carcinogenesis. We conducted the first prospective lipidomics study exploring lipidomic signatures for the risk of gastric lesion progression and early GC. Methods: Our two-stage study of targeted lipidomics enrolled 400 subjects from the National Upper Gastrointestinal Cancer Early Detection Program in China, including 200 subjects of GC and different gastric lesions in the discovery and validation stages. Of validation stage, 152 cases with gastric lesions were prospectively followed for the progression of gastric lesions for a median follow-up of 580 days (interquartile range 390-806 days). We examined the lipidomic signatures associated with the risk of advanced gastric lesions and their progression to GC. Our published tissue proteomic data were referred to further investigate highlighted lipids with their biologically related protein expression in gastric mucosa. Results: We identified 11 plasma lipids significantly inversely associated with the risk of gastric lesion progression and GC occurrence. These lipids were integrated as latent profiles to identify 5 clusters of lipid expression that had distinct risk of gastric lesion progression. The latent profiles significantly improved the ability to predict the progression potential of gastric lesions (AUC: 0.82 vs 0.68, Delong's P = 4.6×10-4) and risk of early GC (AUC: 0.81 vs 0.55, P = 6.3×10-5). Significant associations were found between highlighted lipids, their biologically correlated proteins and the risk of GC, supporting the role of the pathways involving monocarboxylic acid metabolism and lipid transport and catabolic process in GC. Conclusions: Our study revealed the lipidomic signatures associated with the risk of gastric lesion progression and GC occurrence, exhibiting translational implications for GC prevention.


Subject(s)
Precancerous Conditions , Stomach Neoplasms , Humans , Lipidomics , Lipids , Prospective Studies , Proteomics , Stomach Neoplasms/pathology
16.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1932-1941, 2022 Apr.
Article in Chinese | MEDLINE | ID: mdl-35534264

ABSTRACT

This study aims to explore the toxicity mechanism of Rhododendri Mollis Flos(RMF) based on serum metabolomics and network toxicology. The toxic effect of RMF on normal rats was evaluated according to the symptoms, serum biochemical indexes, and histopathology. Serum metabolomics was combined with multivariate statistical analysis to search endogenous differential metabolites and related metabolic pathways. The toxic components, targets, and signaling pathways of RMF were screened by network toxicology technique, and the component-target-metabolite-metabolic pathway network was established with the help of serum metabolomics. The result suggested the neurotoxicity, hepatotoxicity, and cardiotoxicity of RMF. A total of 31 differential metabolites and 10 main metabolic pathways were identified by serum metabolomics, and 11 toxic components, 332 related target genes and 141 main signaling pathways were screened out by network toxicology. Further analysis yielded 7 key toxic components: grayanotoxin Ⅲ,grayanotoxinⅠ, rhodojaponin Ⅱ, rhodojaponin Ⅴ, rhodojaponin Ⅵ, rhodojaponin Ⅶ, and kalmanol, which acted on the following 12 key targets: androgen receptor(AR), albumin(ALB), estrogen receptor ß(ESR2), sex-hormone binding globulin(SHBG), type 11 hydroxysteroid(17-beta) dehydrogenase(HSD17 B11), estrogen receptor α(ESR1), retinoic X receptor-gamma(RXRG), lactate dehydrogenase type C(LDHC), Aldo-keto reductase(AKR) 1 C family member 3(AKR1 C3), ATP binding cassette subfamily B member 1(ABCB1), UDP-glucuronosyltransferase 2 B7(UGT2 B7), and glutamate-ammonia ligase(GLUL). These targets interfered with the metabolism of gamma-aminobutyric acid, estriol, testosterone, retinoic acid, 2-oxobutyric acid, and affected 4 key metabolic pathways of alanine, aspartate and glutamate metabolism, cysteine and methionine metabolism, steroid hormone biosynthesis, and retinol metabolism. RMF exerts toxic effect on multiple systems through multiple components, targets, and pathways. Through the analysis of key toxic components, target genes, metabolites, and metabolic pathways, this study unveiled the mechanism of potential neurotoxicity, cardiotoxicity, and hepatotoxicity of RMF, which is expected to provide a clue for the basic research on toxic Chinese medicinals.


Subject(s)
Chemical and Drug Induced Liver Injury , Drugs, Chinese Herbal , Animals , Cardiotoxicity , Drugs, Chinese Herbal/toxicity , Hormones , Metabolomics , Rats
17.
J Clin Med ; 11(6)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35329931

ABSTRACT

Severe pulmonary hypertension in chronic lung diseases (severe CLD-PH) differs significantly from other types of PH in physiology and prognosis. We aimed to assess whether echocardiography helps predict long-term survival in patients with severe CLD-PH. This single-centre, observational cohort study enrolled 100 patients with severe CLD-PH (mean pulmonary arterial pressure ≥35 mm Hg or ≥25 mm Hg with cardiac index <2.0 L/min/m2 or pulmonary vascular resistance ≥6 Wood units) between 2009 and 2014. The population was randomly divided into a derivation and validation cohort in a 2:1 ratio. To construct a nomogram, a multivariable logistic regression model was applied, and scores were assigned based on the hazard ratio of independent echocardiographic predictors. Multivariate Cox hazards analysis identified the strongest predictors of mortality as pulmonary arterial systolic pressure (PASP), tricuspid annular plane systolic excursion, and right ventricular end-diastolic transverse dimension. The three independent predictors were entered into the nomogram. Compared with PASP alone, the nomogram resulted in an integrated discrimination improvement of 15.5% (95% confidence interval, 5.52−25.5%, p = 0.002) with a net improvement in model discrimination (C-statistic from 0.591 to 0.746). Using echocardiographic parameters, we established and validated a novel nomogram to predict all-cause death for patients with severe CLD-PH.

18.
Acta Pharmacol Sin ; 43(10): 2609-2623, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35347248

ABSTRACT

Renal fibrosis is an unavoidable end result of all forms of progressive chronic kidney diseases (CKD). Discovery of efficacious drugs against renal fibrosis is in crucial need. In a preliminary study we found that a derivative of artemisinin, dihydroartemisinin (DHA), exerted strong renoprotection, and reversed renal fibrosis in adenine-induced CKD mouse model. In this study we investigated the anti-fibrotic mechanisms of DHA, particularly its specific target in renal cells. Renal fibrosis was induced in mice by unilateral ureteral obstruction (UUO) or oral administration of adenine (80 mg · kg-1), the mice received DHA (30 mg · kg-1 · d-1, i.g.) for 14 or 21 days, respectively. We showed that DHA administration markedly attenuated the inflammation and fibrotic responses in the kidneys and significantly improved the renal function in both the renal fibrosis mouse models. In adenine-treated mice, DHA was more effective than 5-azacytidine against renal fibrosis. The anti-fibrotic effects of DHA were also observed in TGF-ß1-treated HK-2 cells. In order to determine the target protein of DHA, we conducted pull-down technology coupled with shotgun proteomics using a small-molecule probe based on the structure of DHA (biotin-DHA). As a results, DNA methyltransferase 1 (DNMT1) was identified as the anti-fibrotic target of DHA in 3 different types of renal cell lines (HK-2, HEK293 and 3T3). We demonstrated that DHA directly bound to Asn 1529 and Thr 1528 of DNMT1 with a Kd value of 8.18 µM. In primary mouse renal tubular cells, we showed that DHA (10 µM) promoted DNMT1 degradation via the ubiquitin-proteasome pathway. DHA-reduced DNMT1 expression effectively reversed Klotho promoter hypermethylation, which led to the reversal of Klotho protein loss in the kidney of UUO mice. This subsequently resulted in inhibition of the Wnt/ß-catenin and TGF-ß/Smad signaling pathways and consequently conferred renoprotection in the animals. Knockdown of Klotho abolished the renoprotective effect of DHA in UUO mice. Our study reveals a novel pharmacological activity for DHA, i.e., renoprotection. DHA exhibits this effect by targeting DNMT1 to reverse Klotho repression. This study provides an evidence for the possible clinical application of DHA in the treatment of renal fibrosis.


Subject(s)
Artemisinins , Kidney , Renal Insufficiency, Chronic , Ureteral Obstruction , Adenine/pharmacology , Animals , Artemisinins/pharmacology , Artemisinins/therapeutic use , Azacitidine/metabolism , Azacitidine/pharmacology , Azacitidine/therapeutic use , Biotin/metabolism , Biotin/pharmacology , Biotin/therapeutic use , DNA/metabolism , DNA Modification Methylases/antagonists & inhibitors , DNA Modification Methylases/metabolism , Fibrosis , Glucuronidase/genetics , HEK293 Cells , Humans , Kidney/pathology , Klotho Proteins/drug effects , Klotho Proteins/metabolism , Mice , Proteasome Endopeptidase Complex/metabolism , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/drug therapy , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , Ubiquitins/metabolism , Ubiquitins/pharmacology , Ubiquitins/therapeutic use , Ureteral Obstruction/drug therapy , beta Catenin/metabolism
20.
Thorax ; 77(3): 247-258, 2022 03.
Article in English | MEDLINE | ID: mdl-34226205

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterised by exuberant tissue remodelling and associated with high unmet medical needs. Outcomes are even worse when IPF results in secondary pulmonary hypertension (PH). Importantly, exaggerated resistance to cell death, excessive proliferation and enhanced synthetic capacity are key endophenotypes of both fibroblasts and pulmonary artery smooth muscle cells, suggesting shared molecular pathways. Under persistent injury, sustained activation of the DNA damage response (DDR) is integral to the preservation of cells survival and their capacity to proliferate. Checkpoint kinases 1 and 2 (CHK1/2) are key components of the DDR. The objective of this study was to assess the role of CHK1/2 in the development and progression of IPF and IPF+PH. METHODS AND RESULTS: Increased expression of DNA damage markers and CHK1/2 were observed in lungs, remodelled pulmonary arteries and isolated fibroblasts from IPF patients and animal models. Blockade of CHK1/2 expression or activity-induced DNA damage overload and reverted the apoptosis-resistant and fibroproliferative phenotype of disease cells. Moreover, inhibition of CHK1/2 was sufficient to interfere with transforming growth factor beta 1-mediated fibroblast activation. Importantly, pharmacological inhibition of CHK1/2 using LY2606368 attenuated fibrosis and pulmonary vascular remodelling leading to improvement in respiratory mechanics and haemodynamic parameters in two animal models mimicking IPF and IPF+PH. CONCLUSION: This study identifies CHK1/2 as key regulators of lung fibrosis and provides a proof of principle for CHK1/2 inhibition as a potential novel therapeutic option for IPF and IPF+PH.


Subject(s)
Hypertension, Pulmonary , Idiopathic Pulmonary Fibrosis , Animals , Fibroblasts/metabolism , Humans , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Myocytes, Smooth Muscle/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL