Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Plant Physiol ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38850036

ABSTRACT

Water transportation to developing tissues relies on the structure and function of plant xylem cells. Plant microtubules govern the direction of cellulose microfibrils and guide secondary cell wall formation and morphogenesis. However, the relevance of microtubule-determined xylem wall thickening patterns in plant hydraulic conductivity remains unclear. In the present study, we identified a maize (Zea mays) semi-dominant mutant, designated drought-overly-sensitive1 (ZmDos1), the upper leaves of which wilted even when exposed to well-watered conditions during growth; the wilting phenotype was aggravated by increased temperatures and decreased humidity. Protoxylem vessels in the stem and leaves of the mutant showed altered thickening patterns of the secondary cell wall (from annular to spiral), decreased inner diameters, and limited water transport efficiency. The causal mutation for this phenotype was found to be a G-to-A mutation in the maize gene α-tubulin4, resulting in a single amino acid substitution at position 196 (E196K). Ectopic expression of the mutant α-tubulin4 in Arabidopsis (Arabidopsis thaliana) changed the orientation of microtubule arrays, suggesting a determinant role of this gene in microtubule assembly and secondary cell wall thickening. Our findings suggest that the spiral wall thickenings triggered by the α-tubulin mutation are stretched during organ elongation, causing a smaller inner diameter of the protoxylem vessels and affecting water transport in maize. This study underscores the importance of tubulin-mediated protoxylem wall thickening in regulating plant hydraulics, improves our understanding of the relationships between protoxylem structural features and functions, and offers candidate genes for the genetic enhancement of maize.

2.
Adv Sci (Weinh) ; : e2402635, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639419

ABSTRACT

Solution-based methods for fabricating all-inorganic perovskite film arrays often suffer from limited control over nucleation and crystallization, resulting in poor homogeneity and coverage. To improve film quality, advanced vapor deposition techniques are employed for continuous film. Here, the vapor deposition strategy to the all-inorganic perovskite films array, enabling area-selective deposition of perovskite through substrate modulation is expanded. It can yield a high-quality perovskite film array with different pixel shapes, various perovskite compositions, and a high resolution of 423 dpi. The resulting photodetector arrays exhibit remarkable optoelectronic performance with an on/off ratio of 13 887 and responsivity of 47.5 A W-1. The device also displays long-term stability in a damp condition for up to 12 h. Moreover, a pulse monitoring sensor based on the perovskite films array demonstrates stable monitoring for pulse signals after being worn for 12 h and with a low illumination of 0.055 mW cm-2, highlighting the potential application in wearable optoelectronic devices.

3.
Plant J ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597817

ABSTRACT

Plasma membrane (PM)-associated abscisic acid (ABA) signal transduction is an important component of ABA signaling. The C2-domain ABA-related (CAR) proteins have been reported to play a crucial role in recruiting ABA receptor PYR1/PYL/RCAR (PYLs) to the PM. However, the molecular details of the involvement of CAR proteins in membrane-delimited ABA signal transduction remain unclear. For instance, where this response process takes place and whether any additional members besides PYL are taking part in this signaling process. Here, the GUS-tagged materials for all Arabidopsis CAR members were used to comprehensively visualize the extensive expression patterns of the CAR family genes. Based on the representativeness of CAR1 in response to ABA, we determined to use it as a target to study the function of CAR proteins in PM-associated ABA signaling. Single-particle tracking showed that ABA affected the spatiotemporal dynamics of CAR1. The presence of ABA prolonged the dwell time of CAR1 on the membrane and showed faster lateral mobility. Surprisingly, we verified that CAR1 could directly recruit hypersensitive to ABA1 (HAB1) and SNF1-related protein kinase 2.2 (SnRK2.2) to the PM at both the bulk and single-molecule levels. Furthermore, PM localization of CAR1 was demonstrated to be related to membrane microdomains. Collectively, our study revealed that CARs recruited the three main components of ABA signaling to the PM to respond positively to ABA. This study deepens our understanding of ABA signal transduction.

4.
Adv Mater ; : e2401931, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573797

ABSTRACT

Creating a large-scale contactless user-interactive sensing display (CUISD) with optimal features is challenging but crucial for efficient human-human or human-machine interactions. This study reports a CUISD based on dynamic alternating current electroluminescence (ACEL) that responds to humidity. Subsecond humidity-induced luminescence is achieved by integrating a highly responsive hydrogel into the ACEL layer. The patterned silver nanofiber electrode and luminescence layer, produced through electrospinning and microfabrication, result in a stretchable, large-scale, high-resolution, multicolor, and dynamic CUISD. The CUISD is implemented for the real-time control of a remote-controlled car, wherein the luminescence signals induced by touchless finger movements are distinguished and encoded to deliver specific commands. Moreover, the distinctive recognition of breathing facilitates the CUISD to serve as a visual signal transmitter for information interaction, which is particularly beneficial for individuals with disabilities. The paradigm shift depicts in this work is expected to reshape the way authors interact with each other and devices, discovering niche applications in virtual/augmented reality and the metaverse.

5.
Medicine (Baltimore) ; 103(16): e37782, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640278

ABSTRACT

This research aimed to summarize the research development and hot points in on the connection between sport and nutrition overall through bibliometric analysis. We collected the publications in the last 10 years (2013-2023) related to between sport and nutrition in the Web of Science database, and applied Citespace to assess the knowledge mapping. The results showed as follows that the number of manuscripts about sport and nutrition totaled 10,016, with a faster increase after 2019. The country, institution, and author with the most publications are the USA, University of California System, Burke, Louise M. In addition, the most co-cited reference is Journal of the Academy of Nutrition and Dietetics (2016) (199). Based on a 10-year bibliometric investigation, we know the USA, the University of California System has become one of this discipline's major research forces. Research on sport and nutrition benefits from the best partnerships between industrialized nations and prominent universities.


Subject(s)
Nutritional Status , Sports , Humans , Academies and Institutes , Bibliometrics , Databases, Factual
6.
Biochem Biophys Res Commun ; 714: 149956, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38663095

ABSTRACT

BACKGROUND: Maize is a major cereal crop world widely, however, the yield of maize is frequently limited by dehydration and even death of plants, which resulted from osmotic stress such as drought and salinity. Dissection of molecular mechanisms controlling stress tolerance will enable plant scientists and breeders to increase crops yield by manipulating key regulatory components. METHODS: The candidate OSR1 gene was identified by map-based cloning. The expression level of OSR1 was verified by qRT-PCR and digital PCR in WT and osr1 mutant. Electrophoretic mobility shift assay, transactivation activity assay, subcellular localization, transcriptome analysis and physiological characters measurements were conducted to analyze the function of OSR1 in osmotic stress resistance in maize. RESULTS: The osr1 mutant was significantly less sensitive to osmotic stress than the WT plants and displayed stronger water-holding capacity, and the OSR1 homologous mutant in Arabidopsis showed a phenotype similar with maize osr1 mutant. Differentially expressed genes (DEGs) were identified between WT and osr1 under osmotic stress by transcriptome analysis, the expression levels of many genes, such as LEA, auxin-related factors, PPR family members, and TPR family members, changed notably, which may primarily involve in osmotic stress or promote root development. CONCLUSIONS: OSR1 may serve as a negative regulatory factor in response to osmotic stress in maize. The present study sheds new light on the molecular mechanisms of osmotic stress in maize.


Subject(s)
Gene Expression Regulation, Plant , Osmotic Pressure , Plant Proteins , Transcription Factors , Zea mays , Zea mays/genetics , Zea mays/metabolism , Zea mays/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Mutation , Stress, Physiological/genetics , Gene Expression Profiling
7.
ACS Appl Mater Interfaces ; 16(13): 16482-16493, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38506366

ABSTRACT

The interfacial pyro-phototronic effect (IPPE) presents a novel approach for improving the performance of self-powered photodetectors (PDs) based on metal halide perovskites (MHPs). The interfacial contact conditions within the Schottky junctions are crucial in facilitating the IPPE phenomenon. However, the fabrication of an ideal Schottky junction utilizing MHPs is a challenging endeavor. In this study, we present a surface passivation method aimed at enhancing the performance of self-powered photodetectors based on inverted planar perovskite structures in micro- and nanoscale metal-halide perovskite SCs. Our findings demonstrate that the incorporation of a lead halide salt with a benzene ring moiety for surface passivation leads to a substantial improvement in photoresponses by means of the IPPE. Conversely, the inclusion of an alkane chain in the salt impedes the IPPE. The underlying mechanism can be elucidated through an examination of the band structure, particularly the work function (WF) modulated by surface passivation. Consequently, this alteration affects the band bending and the built-in field (VBi) at the interface. This strategy presents a feasible and effective method for producing interfacial pyroelectricity in MHPs, thus facilitating its potential application in practical contexts such as energy conversion and infrared sensors.

8.
Mater Horiz ; 11(6): 1548-1559, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38263896

ABSTRACT

Self-healing elastomers usually show poor mechanical properties and environmental stability, and they cannot self-report mechanical/chemical damage. Herein, an innovative design strategy is reported that combines symmetric/asymmetric chain extenders to create large yet disordered hard domains within polyurethane (PU) elastomers, enabling the integration of mechanical robustness and self-reporting and self-healing capabilities to overcome both mechanical and chemical damage. Specifically, large yet disordered hard domains were created by governing the molar contents of asymmetric fluorescent 2-(4-aminophenyl)-5-aminobenzimidazole (PABZ) and symmetric 4-aminophenyl disulfide (APDS). Such a structural feature led to a small free-volume fraction, prominent strain-induced crystallization (SIC), and high energy of dissipation, enabling the PU elastomer to display outstanding mechanical strength (60.7 MPa) and toughness (177.9 MJ m-3). Meanwhile, the loose stacking of disordered hard domains imposed small restriction on network chains and imparted the network with high relaxation dynamics, leading to high healing efficiency (97.8%). More importantly, the fluorescence intensity was stimulus-responsive and thus the PU elastomer could self-report mechanical/chemical damage and healing processes. The PU elastomer also showed potential application prospects in information encoding and encryption. Furthermore, selecting polydimethylsiloxane as one of the soft segments could effectively endow the PU elastomer with intrinsic hydrophobicity. Therefore, this work provides valuable guidance for designing multi-functional materials with anti-counterfeiting, self-reporting, and healing properties as well as high mechanical properties and hydrophobicity.

9.
Nanoscale ; 15(43): 17443-17454, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37859523

ABSTRACT

A flow-cell offers many advantages for single-molecule studies. But, its merit as a quantitative single-molecule tool has long been underestimated. In this work, we developed a gas-pumped fully calibrated flow-cell system combined with fluorescence imaging for simultaneous single-molecule force measurement and visualization. Such a flow-cell system has considered the hydrodynamic drags on biomolecules and hence can apply and measure force up to more than 100 pN in sub-pN precision with an ultra-high force stability (force drift <0.01 pN in 10 minutes) and tuning accuracy (∼0.04 pN). Meanwhile, it also allows acquiring force signals and fluorescence images at the same time, parallelly tracking hundreds of protein motors in real time as well as monitoring the conformational changes of biomolecules under a well-controlled force, as demonstrated by a series of single-molecule experiments in this work, including the studies of DNA overstretching dynamics, transcription under force and DNA folding/unfolding dynamics. Interesting findings, such as the very tight association of single-stranded binding (SSB) proteins with ssDNA and the reversed transcription, have also been made. These results together lay down an essential foundation for a flow-cell to be used as a versatile, quantitative and high-throughput tool for single-molecule manipulation and visualization.


Subject(s)
DNA, Single-Stranded , DNA , DNA/chemistry , Nanotechnology , Proteins , Optical Imaging
10.
Polymers (Basel) ; 15(19)2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37836069

ABSTRACT

The fabrication of mechanically robust and self-healing polymeric materials remains a formidable challenge. To address the drawbacks, a core strategy is proposed based on the dynamic hard domains formed by hierarchical hydrogen bonds and disulfide bonds. The dynamic hard domains dissipate considerable stress energy during stretching. Meanwhile, the synergistic effect of hierarchical hydrogen bonds and disulfide bonds greatly enhances the relaxation dynamics of the PU network chains, thus accelerating network reorganization. Therefore, this designed strategy effectively solves the inherent drawback between cohesive energy and relaxation dynamics of the PU network. As a result, the PU elastomer has excellent mechanical properties (9.9 MPa and 44.87 MJ/m3) and high self-healing efficiency (96.2%). This approach provides a universal but valid strategy to fabricate high-performance self-healing polymeric materials. Meanwhile, such materials can be extended to emerging fields such as flexible robotics and wearable electronics.

11.
Polymers (Basel) ; 15(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37836074

ABSTRACT

Recently, many tough synthetic hydrogels have been created as promising candidates in fields such as smart electronic devices. In this paper, we propose a simple strategy to construct tough and robust hydrogels. Two-dimensional Ti3C2Tx MXene nanosheets and metal ions were introduced into poly(acrylamide-co-acrylic acid) hydrogels, the MXene nanosheets acted as multifunctional cross-linkers and effective stress-transfer centers, and physical cross-links were formed between Fe3+ and carboxylic acid. Under deformation, the coordination interactions exhibit reversible dissociation and reorganization properties, suggesting a novel mechanism of energy dissipation and stress redistribution. The design enabled the hydrogel to exhibit outstanding and balanced mechanical properties (tensile strength of up to 5.67 MPa and elongation at break of up to 508%). This study will facilitate the diverse applications of metallosupramolecular hydrogels.

12.
J Org Chem ; 88(20): 14264-14273, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37811870

ABSTRACT

Intermolecular (3 + 2) annulation emerges as a potent approach for constructing 5-membered carbocycles through the fusion of two distinct components. This synopsis encapsulates recent strides in the realm of transition-metal-catalyzed dehydrogenative (3 + 2) annulation of aromatic hydrocarbons, achieved through the dual functionalization of benzylic and ortho C-H bonds. Encompassing three pivotal strategies, namely, (i) C-H bond activation, (ii) benzylic oxidation, and (iii) π-coordination activation, this review offers an overview of the field's recent developments.

13.
Nat Commun ; 14(1): 4384, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37474494

ABSTRACT

The unique dumbbell-shape of grass guard cells (GCs) is controlled by their cell walls which enable their rapid responses to the environment. The molecular mechanisms regulating the synthesis and assembly of GC walls are as yet unknown. Here we have identified BZU3, a maize gene encoding UDP-glucose 4-epimerase that regulates the supply of UDP-glucose during GC wall synthesis. The BZU3 mutation leads to significant decreases in cellular UDP-glucose levels. Immunofluorescence intensities reporting levels of cellulose and mixed-linkage glucans are reduced in the GCs, resulting in impaired local wall thickening. BZU3 also catalyzes the epimerization of UDP-N-acetylgalactosamine to UDP-N-acetylglucosamine, and the BZU3 mutation affects N-glycosylation of proteins that may be involved in cell wall synthesis and signaling. Our results suggest that the spatiotemporal modulation of BZU3 plays a dual role in controlling cell wall synthesis and glycosylation via controlling UDP-glucose/N-acetylglucosamine homeostasis during stomatal morphogenesis. These findings provide insights into the mechanisms controlling formation of the unique morphology of grass stomata.


Subject(s)
Racemases and Epimerases , Zea mays , Zea mays/genetics , Zea mays/metabolism , Racemases and Epimerases/metabolism , Glycosylation , Acetylglucosamine/metabolism , Poaceae/metabolism , Cell Wall/metabolism , Uridine Diphosphate/metabolism
14.
Nanoscale Horiz ; 8(8): 1014-1033, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37337833

ABSTRACT

Metal halide perovskites are considered promising materials for next-generation optoelectronic devices due to their excellent optoelectronic performances and simple solution preparation process. Precise micro/nano-scale patterning techniques enable perovskite materials to be used for array integration of photodetectors. In this review, the device types of perovskite-based photodetectors are introduced and the structural characteristics and corresponding device performances are analyzed. Then, the typical construction methods suitable for the fabrication of perovskite photodetector arrays are highlighted, including surface treatment technology, template-assisted construction, inkjet printing technology, and modified photolithography. Furthermore, the current development trends and their applications in image sensing of perovskite photodetector arrays are summarized. Finally, major challenges are presented to guide the development of perovskite photodetector arrays.

15.
Small Methods ; 7(9): e2300339, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37199230

ABSTRACT

Metal halide perovskite photodetector arrays have demonstrated great potential applications in the field of integrated systems, optical communications, and health monitoring. However, the fabrication of large-scale and high-resolution device is still challenging due to their incompatibility with the polar solvents. Here, a universal fabrication strategy that utilizes ultrathin encapsulation-assisted photolithography and etching to create high-resolution photodetectors array with vertical crossbar structure is reported. This approach yields a 48 × 48 photodetector array with a resolution of 317 ppi. The device shows good imaging capability with a high on/off ratio of 3.3 × 105 and long-term working stability over 12 h. Furthermore, this strategy can be applied to five different material systems, and is fully compatible with the existing photolithography and etching techniques, which are expected to have potential applications in the other high-density and solvent-sensitive devices array, including perovskite- or organic semiconductor-based memristor, light emitting diode displays, and transistors.

16.
Materials (Basel) ; 16(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37109987

ABSTRACT

Hip replacement femoral implants are made of substantial materials that all have stiffness considerably higher than that of bone, which can cause significant bone resorption secondary to stress shielding and lead to severe complications. The topology optimization design method based on the uniform distribution of material micro-structure density can form a continuous mechanical transmission route, which can better solve the problem of reducing the stress shielding effect. A multi-scale parallel topology optimization method is proposed in this paper and a topological structure of type B femoral stem is derived. Using the traditional topology optimization method (Solid Isotropic Material with Penalization, SIMP), a topological structure of type A femoral stem is also derived. The sensitivity of the two kinds of femoral stems to the change of load direction is compared with the variation amplitude of the structural flexibility of the femoral stem. Furthermore, the finite element method is used to analyze the stress of type A and type B femoral stem under multiple conditions. Simulation and experimental results show that the average stress of type A and type B femoral stem on the femur are 14.80 MPa, 23.55 MPa, 16.94 MPa and 10.89 MPa, 20.92 MPa, 16.50 MPa, respectively. For type B femoral stem, the average error of strain is -1682µÎµ and the average relative error is 20.3% at the test points on the medial side and the mean error of strain is 1281µÎµ and the mean relative error is 19.5% at the test points on the outside.

17.
Front Microbiol ; 14: 1139456, 2023.
Article in English | MEDLINE | ID: mdl-37082180

ABSTRACT

Anthracnose disease caused by Colletotrichum gloeosporioides is one of the devastating diseases of yams (Dioscorea sp.) worldwide. In this study, we aimed to isolate endophytic actinobacteria from yam plants and to evaluate their potential for the control of yam anthracnose based on bioassays and genomic analyses. A total of 116 endophytic actinomycete strains were isolated from the surface-sterilized yam tissues from a yam orchard in Hainan Province, China. In total, 23 isolates showed antagonistic activity against C. gloeosporioides. An endophytic actinomycete, designated HNM0140T, which exhibited strong antifungal activities, multiple biocontrol, and plant growth-promoting (PGP) traits was subsequently selected to colonize in the tissue-cultured seedlings of yam and was tested for its in vivo biocontrol potential on yam anthracnose. The results showed that treatment with strain HNM0140T markedly reduced the severity and incidence of yam anthracnose under greenhouse conditions. Morphological and chemotaxonomic analyses showed that strain HNM0140T was assigned to the genus Streptomyces. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain HNM0140T formed a separate cluster together with Streptomyces lydicus ATCC 25470T (99.45%), Streptomyces chattanoogensis NRRL ISP-5002T (99.45%), and Streptomyces kronopolitis NEAU-ML8T (98.97%). The phylogenomic tree also showed that strain HNM0140T stably clustered with Streptomyces lydicus ATCC 25470T. The ANI and dDDH between strain HNM0140T and its closest related-type species were well below the recommended thresholds for species demarcation. Hence, based on the phylogenetic, genomic, and phenotypic analyses, strain HNM0140T should represent a new streptomycete species named Streptomyces endophytica sp. nov. Genomic analysis revealed that strain HNM0140T harbored 18 putative BGCs for secondary metabolites, some PGP-related genes, and several genes coding for antifungal enzymes. The presented results indicated that strain HNM0140T was a promising biocontrol agent for yam anthracnose.

18.
J Am Chem Soc ; 145(17): 9464-9470, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37079381

ABSTRACT

Given the wide availability and low cost of alkylbenzenes, direct C-H functionalization of these aromatic hydrocarbons to afford structurally complex building blocks has long been of interest in organic synthesis. Herein we describe a method for rhodium-catalyzed dehydrogenative (3 + 2) cycloaddition reactions of alkylbenzenes with 1,1-bis(phenylsulfonyl)ethylene. The π-coordination with a rhodium catalyst facilitates the benzylic deprotonation, allowing for the subsequent (3 + 2) cycloaddition in which the metal-complexed carbanion serves as a unique all-carbon 1,3-dipole equivalent. We demonstrated the generality of this catalytic method by carrying out reactions of a large array of alkylbenzenes to generate dihydroindene derivatives bearing two synthetically versatile sulfonyl groups. Quantum-chemical calculations revealed details of the reaction process.

19.
Nat Commun ; 14(1): 2170, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37061515

ABSTRACT

Homogenous transition-metal catalysts bearing a chiral ligand are widely used for asymmetric hydrogenation of unsaturated compounds such as olefins and ketones, providing efficient concise access to products with chiral carbon centers. However, distinguishing the re and si prochiral faces of a double bond bearing two substituents that are sterically and electronically similar is challenging for these catalysts. Herein, we report a relay strategy for constructing compounds with a chiral gem-diaryl carbon center by means of a combination of selective arene exchange between 1,1-diarylethylenes or benzophenones with (naphthalene)Cr(CO)3 and subsequent asymmetric hydrogenation. During the hydrogenation, the Cr(CO)3 unit facilitate differentiation of the two prochiral faces of the substrate double bond via formation of a three-dimensional complex with one of the aromatic rings by selective arene exchange. Density functional theory calculations reveal that during the hydrogenation, chromium coordination affected π-π stacking of the substrate and the catalyst ligand, leading to differentiation of the prochiral faces.

20.
Light Sci Appl ; 12(1): 67, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36882401

ABSTRACT

Metal halide perovskites possess intriguing optoelectronic properties, however, the lack of precise control of on-chip fabrication of the large-scale perovskite single crystal arrays restricts its application in integrated devices. Here, we report a space confinement and antisolvent-assisted crystallization method for the homogeneous perovskite single crystal arrays spanning 100 square centimeter areas. This method enables precise control over the crystal arrays, including different array shapes and resolutions with less than 10%-pixel position variation, tunable pixel dimensions from 2 to 8 µm as well as the in-plane rotation of each pixel. The crystal pixel could serve as a high-quality whispering gallery mode (WGM) microcavity with a quality factor of 2915 and a threshold of 4.14 µJ cm-2. Through directly on-chip fabrication on the patterned electrodes, a vertical structured photodetector array is demonstrated with stable photoswitching behavior and the capability to image the input patterns, indicating the potential application in the integrated systems of this method.

SELECTION OF CITATIONS
SEARCH DETAIL
...