Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791301

ABSTRACT

Psychological stress increases risk of gastrointestinal tract diseases. However, the mechanism behind stress-induced gastrointestinal injury is not well understood. The objective of our study is to elucidate the putative mechanism of stress-induced gastrointestinal injury and develop an intervention strategy. To achieve this, we employed the restraint stress mouse model, a well-established method to study the pathophysiological changes associated with psychological stress in mice. By orally administering gut-nonabsorbable Evans blue dye and monitoring its plasma levels, we were able to track the progression of gastrointestinal injury in live mice. Additionally, flow cytometry was utilized to assess the viability, death, and inflammatory status of splenic leukocytes, providing insights into the stress-induced impact on the innate immune system associated with stress-induced gastrointestinal injury. Our findings reveal that neutrophils represent the primary innate immune leukocyte lineage responsible for stress-induced inflammation. Splenic neutrophils exhibited elevated expression levels of the pro-inflammatory cytokine IL-1, cellular reactive oxygen species, mitochondrial burden, and cell death following stress challenge compared to other innate immune cells such as macrophages, monocytes, and dendritic cells. Regulated cell death analysis indicated that NETosis is the predominant stress-induced cell death response among other analyzed regulated cell death pathways. NETosis culminates in the formation and release of neutrophil extracellular traps, which play a crucial role in modulating inflammation by binding to pathogens. Treatment with the NETosis inhibitor GSK484 rescued stress-induced neutrophil extracellular trap release and gastrointestinal injury, highlighting the involvement of neutrophil extracellular traps in stress-induced gastrointestinal inflammation. Our results suggest that neutrophil NETosis could serve as a promising drug target for managing psychological stress-induced gastrointestinal injuries.


Subject(s)
Inflammation , Neutrophils , Restraint, Physical , Stress, Psychological , Animals , Mice , Neutrophils/immunology , Neutrophils/metabolism , Stress, Psychological/complications , Stress, Psychological/immunology , Inflammation/pathology , Male , Mice, Inbred C57BL , Extracellular Traps/metabolism , Gastrointestinal Diseases/etiology , Disease Models, Animal , Reactive Oxygen Species/metabolism
2.
ACS Omega ; 9(1): 1656-1669, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222532

ABSTRACT

The identification of fluid types has always been the focus of oil and gas field exploration and development research. At this stage, a large amount of CO2 has been found in many basins during exploration and development, which greatly affects the accuracy of reservoir understanding and evaluation, so it is very important to accurately identify the fluid type of the CO2-bearing reservoirs. However, methods utilizing multiple logging data are greatly affected by physical changes in the formation, resulting in methods that are only applicable to the area and layer under study, are poorly generalized, and require multiple instruments and experimental support. Existing nuclear logging methods that primarily utilize logging curve stacking and intersection map methods fail to take full advantage of logging. In this study, taking advantage of the fact that the neutron gamma technique of nuclear logging measurement can provide multiparameter information with the characteristics of machine learning to deal with multidimensional data, comparing the classification results of different ware learning methods under different classification strategies and selecting a method of identifying fluids in logging while drilling was based on the idea of dichotomy and the use of the support vector machine as a meta-model. This solved the problem of identifying fluids in the CO2-bearing reservoirs, providing new ideas for the design and fabrication of logging instruments. These instruments can assist with the exploration and development of oil and gas fields and has a broad application prospect in CO2-EOR and CCUS.

3.
Am J Cancer Res ; 13(10): 4903-4917, 2023.
Article in English | MEDLINE | ID: mdl-37970347

ABSTRACT

The poor prognosis of hepatocellular carcinoma (HCC) was ascribed to metastasis. Targeted therapy aiming at the molecules along the metastatic pathway is a promising therapeutic strategy. Among them, hydrogen peroxide inducible clone-5 (Hic-5) is highlighted. Hic-5, discovered as a reactive oxygen species (ROS)-inducible gene, was identified to be an adaptor protein in focal adhesion and a critical signaling mediator upregulated in various cancers including HCC. Moreover, Hic-5 may regulate epithelial-mesenchymal transition (EMT) transcription factor Snail and its downstream mesenchymal genes including fibronectin and matrix metalloproteinase-9 required for migration and invasion of HCC. However, the comprehensive Hic-5-mediated pathway was not established and whether Hic-5 can be a target for preventing HCC progression has not been validated in vivo. Using whole-transcriptome mRNA sequencing, we found reactive oxygen species modulator (ROMO) and ZNF395 were upregulated by Hic-5 in a patient-derived HCC cell line, HCC372. Whereas ROMO was involved in Hic-5-mediated ROS signaling, ZNF395 locates downstream of Snail for mesenchymal genes expression required for cell migration. Also, ZNF395 but not ROMO was upregulated by Hic-5 for migration in another patient-derived HCC cell line, HCC374. Further, by in vivo knock down of Hic-5 using the Stable Nucleic Acids Lipid nanoparticles (SNALP)-carried Hic-5 siRNA, progression of HCC372 and HCC374 in SCID mice was prevented, coupled with the decrease of the downstream mesenchymal genes. Our study provides the preclinical evidence that targeting Hic-5 is potentially able to prevent the progression of HCCs with Hic-5 overexpression.

4.
Int J Mol Sci ; 24(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37298220

ABSTRACT

Dengue hemorrhagic fever (DHF) is a severe form of dengue virus (DENV) infection that can lead to abnormal immune responses, endothelial vascular dysfunction, and hemorrhage pathogenesis. The virion-associated envelope protein domain III (EIII) is thought to play a role in the virulence of DENV by damaging endothelial cells. However, it is unclear whether EIII-coated nanoparticles simulating DENV virus particles could cause a more severe pathogenesis than soluble EIII alone. This study aimed to investigate whether EIII-coated silica nanoparticles (EIII-SNPs) could elicit greater cytotoxicity in endothelial cells and hemorrhage pathogenesis in mice compared to EIII or silica nanoparticles alone. The main methods included in vitro assays to assess cytotoxicity and in vivo experiments to examine hemorrhage pathogenesis in mice. EIII-SNPs induced greater endothelial cytotoxicity in vitro than EIII or silica nanoparticles alone. Two-hit combined treatment with EIII-SNPs and antiplatelet antibodies to simulate DHF hemorrhage pathogenesis during secondary DENV infections resulted in higher endothelial cytotoxicity than either treatment alone. In mouse experiments, two-hit combined treatment with EIII-SNPs and antiplatelet antibodies resulted in more severe hemorrhage pathogenesis compared to single treatments of EIII, EIII-SNPs, or antiplatelet antibodies alone. These findings suggest that EIII-coated nanoparticles are more cytotoxic than soluble EIII and could be used to develop a tentative dengue two-hit hemorrhage pathogenesis model in mice. Additionally, our results indicated that EIII-containing DENV particles could potentially exacerbate hemorrhage pathogenesis in DHF patients who have antiplatelet antibodies, highlighting the need for further research on the potential role of EIII in DHF pathogenesis.


Subject(s)
Dengue Virus , Dengue , Animals , Mice , Antibodies, Viral , Protein Domains , Endothelial Cells/metabolism , Hemorrhage/etiology
5.
J Comput Assist Tomogr ; 47(2): 220-228, 2023.
Article in English | MEDLINE | ID: mdl-36877755

ABSTRACT

OBJECTIVES: The objective of this study is to preoperatively investigate the value of multiphasic contrast-enhanced computed tomography (CT)-based radiomics signatures for distinguishing high-risk thymic epithelial tumors (HTET) from low-risk thymic epithelial tumors (LTET) compared with conventional CT signatures. MATERIALS AND METHODS: Pathologically confirmed 305 thymic epithelial tumors (TETs), including 147 LTET (Type A/AB/B1) and 158 HTET (Type B2/B3/C), were retrospectively analyzed, and were randomly divided into training (n = 214) and validation cohorts (n = 91). All patients underwent nonenhanced, arterial contrast-enhanced, and venous contrast-enhanced CT analysis. The least absolute shrinkage and selection operator regression with 10-fold cross-validation was performed for radiomic models building, and multivariate logistic regression analysis was performed for radiological and combined models building. The performance of the model was evaluated by the area under the receiver operating characteristic curve (AUC of ROC), and the AUCs were compared using the Delong test. Decision curve analysis was used to evaluate the clinical value of each model. Nomogram and calibration curves were plotted for the combined model. RESULTS: The AUCs for radiological model in the training and validation cohorts were 0.756 and 0.733, respectively. For nonenhanced, arterial contrast-enhanced, venous contrast-enhanced CT and 3-phase images combined radiomics models, the AUCs were 0.940, 0.946, 0.960, and 0.986, respectively, in the training cohort, whereas 0.859, 0.876, 0.930, and 0.923, respectively, in the validation cohort. The combined model, including CT morphology and radiomics signature, showed AUCs of 0.990 and 0.943 in the training and validation cohorts, respectively. Delong test and decision curve analysis showed that the predictive performance and clinical value of the 4 radiomics models and combined model were greater than the radiological model ( P < 0.05). CONCLUSIONS: The combined model, including CT morphology and radiomics signature, greatly improved the predictive performance for distinguishing HTET from LTET. Radiomics texture analysis can be used as a noninvasive method for preoperative prediction of the pathological subtypes of TET.


Subject(s)
Neoplasms, Glandular and Epithelial , Radiology , Humans , Retrospective Studies , Tomography, X-Ray Computed , Neoplasms, Glandular and Epithelial/diagnostic imaging
6.
Int J Biol Macromol ; 231: 123235, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36641023

ABSTRACT

Nowadays, advances in science and technology in biological macromolecules have led to the early detection and treatment of cancer-based cells. In this study, molecular dynamics (MD) simulation examines atomic interactions between 3DN5 and 5OTF structures. Technically, the effect of the initial temperature on the atomic behavior (AB) of the simulated samples is investigated. The stability of simulated structures is examined with changes in temperature and kinetic energy (KE) quantities. The biomechanical interaction is examined by the radius of gyration (RoG), interaction energy (IE), and interaction force (IF). The results show that the RoG changes from a numerical value of 40.25 to 41.33 Å, and the IE and IF converge to -552.38 kcal/mol and - 207.10 kcal/mol.Å after 10 ns, respectively. Due to the temperature effect on the AB of the structures, the RoG increases by increasing the initial temperature from 41.33 to 58.91 Å. By increasing the initial temperature to 350 K, the IE increases from -551.38 to -500.11 kcal/mol, and the IF increases from -207.10 to -183.39 kcal/mol.Å. Finally, the results of these studies are expected to lead to early detection and treatment of cancer cells.


Subject(s)
Molecular Dynamics Simulation , Proteins , Temperature , Molecular Docking Simulation
7.
J Pharm Sci ; 112(5): 1388-1400, 2023 05.
Article in English | MEDLINE | ID: mdl-36566929

ABSTRACT

There is currently limited research on the structure-property relationship of reduction stimuli-responsive polymeric crosslinked micelles using mesoscopic simulations. Herein, dissipative particle dynamics (DPD) simulations were used to simulate the self-assembly process of the blank non-crosslinked micelle, the structure and doxorubicin (DOX) distribution of diselenide crosslinked micelle with different crosslinker contents (CCs) based on the nearest-neighbor bonding principle. The results revealed that the formation of a three-layer spherical micelle and the loaded DOX mainly distributed in the polycaprolactone (PCL) core and hydroxyethyl methacrylate (HEMA) mesosphere. The larger the dosage of DOX, the more DOX encapsulated, but the encapsulation of DOX in the hydrophobic domain would reach saturation when the dosage increased to 6.0 %. In micelles with lower CCs or crosslinking levels (CLs), DOX entered the middle layer and the inner core faster. Then, based on the nearest media-bead bond breaking principle and subsequently DPD simulation, the effects of different CCs on the micelle structure and DOX release properties were investigated. Low CC could cause fast drug release. With the increase of CCs, the micelle showed a slower DOX release trend. The multilayer crosslinked network system also affected the DOX release rate. Hence, this work can provide some mesoscale guidance for the structural design and structure-property relationship of stimuli-responsive reversible crosslinked micelles for drug delivery.


Subject(s)
Micelles , Tumor Microenvironment , Doxorubicin , Drug Delivery Systems , Polymers , Drug Carriers/chemistry , Hydrogen-Ion Concentration
8.
Pharmaceutics ; 14(12)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36559193

ABSTRACT

Cholangiocarcinoma (CCA) is a malignant neoplasm of the bile ducts, being the second most common type of cancer in the liver, and most patients are diagnosed at a late stage with poor prognosis. Targeted therapy aiming at receptors tyrosine kinases (RTKs) such as c-Met or EGFR have been developed but with unsatisfactory outcomes. In our recent report, we found several oncogenic molecules downstream of RTKs, including hydrogen peroxide clone-5 (Hic-5), Src, AKT and JNK, were elevated in tissues of a significant portion of metastatic CCAs. By inhibitor studies and a knockdown approach, these molecules were found to be within the same signal cascade responsible for the migration of HuCCT1 cells, a conventionally used CCA cell line. Herein, we also found Src inhibitor dasatinib and Hic-5 siRNA corporately suppressed HuCCT1 cell invasion. Moreover, dasatinib inhibited the progression of the HuCCT1 tumor on SCID mice skin coupled with decreasing the expression of Hic-5 and EGFR and the activities of Src, AKT and JNK. In addition, we found a glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and several cytoskeletal molecules such as tubulin and cofilin were dramatically decreased after a long-term treatment of the HuCCT1 tumor with a high dose of dasatinib. Specifically, GAPDH was shown to be a downstream effector of the Hic-5/Src/AKT cascade involved in HuCCT1 cell migration. On the other hand, TFK1, another CCA cell line without Hic-5 expression, exhibited very low motility, whereas an ectopic Hic-5 expression enhanced the activation of Src and AKT and marginally increased TFK1 migration. In the future, it is tempting to investigate whether cotargeting Src, Hic-5 and/or GAPDH is efficient for preventing CCA progression in future clinical trials.

9.
BMC Med ; 20(1): 360, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36253753

ABSTRACT

BACKGROUND: Acute febrile respiratory illness (AFRI) patients are susceptible to pneumonia and suffer from significant morbidity and mortality throughout the world. In primary care settings, the situation is worse. Limited by computerized tomography resources and physician experiences, AFRI patients in primary care settings may not be diagnosed appropriately, which would affect following treatment. In this study, we aimed to develop and validate a simple prediction model to help physicians quickly identify AFRI patients of pneumonia risk in primary care settings. METHODS: A total of 1977 AFRI patients were enrolled at two fever clinics in Shanghai, China, and among them, 727 patients who underwent CT scans were included in the analysis. Acute alveolar or interstitial infiltrates found on CT images were diagnosed with pneumonia. Characteristics and blood parameters were compared between pneumonia and non-pneumonia patients. Then a multivariable model for pneumonia prediction was developed through logistic regression analysis. Its value for pneumonia prediction was prospectively assessed in an external multi-center population, which included 1299 AFRI patients in primary settings from 5 different provinces throughout China. RESULTS: In the model development population, pneumonia patients (n = 227) had a longer duration of fever; higher frequencies of purulent sputum, dyspnea, and thoracic pain; and higher levels of respiration rates and C-reactive protein (CRP) than non-pneumonia patients (n = 500). Logistic regression analysis worked out a model composed of items on dyspnea, respiration rates > 20/min, and CRP > 20 mg/l (DRC) for pneumonia prediction with an area under curve (AUC) of 0.8506. In the external validation population, the predictive accuracy of the DRC model was the highest when choosing at least one positive item (1 score) as a cut-off point with a sensitivity of 87.0% and specificity of 80.5%. DRC scores increased with pneumonia severity and lung lobe involvement and showed good performance for both bacterial and viral pneumonia. For viral pneumonia, dyspnea plus respiration rates > 20/min had good predictive capacity regardless of CRP concentration. CONCLUSIONS: DRC model is a simple tool that predicts pneumonia among AFRI patients, which would help physicians utilize medical resources rationally in primary care settings.


Subject(s)
C-Reactive Protein , Pneumonia, Viral , C-Reactive Protein/metabolism , China , Dyspnea/diagnosis , Fever/diagnosis , Humans , Primary Health Care , Respiratory Rate
10.
J Environ Public Health ; 2022: 3919519, 2022.
Article in English | MEDLINE | ID: mdl-36111067

ABSTRACT

Teenage depression, also known as TD, is a common mental illness that is characterized by symptoms such as hopelessness, helplessness, pessimism, depression, and decreased energy. It has always been a hot topic to discuss how rewards and punishments work in education. In order to prevent and treat adolescent depression, this study examines the mechanisms of educational reinforcement and punishment as well as psychological interventions. In this study, the activated brain regions are analyzed using data mining (DM) technology to determine whether they are significantly more or less active than the rest of the brain of students who are not experiencing negative emotions. When the word vector has 90 dimensions, the results demonstrate that the average F1 value of the weighted word vector method is 81.3 percent. It has been established that the approach taken in this work offers a reliable way to diagnose TD.


Subject(s)
Psychosocial Intervention , Punishment , Adolescent , Depression/psychology , Humans , Punishment/psychology , Reward , Students
11.
ACS Omega ; 7(36): 32349-32359, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36119988

ABSTRACT

Due to the unique characteristics of reservoirs in the Yinggehai Basin in the South China Sea, such as high temperature and high pressure (HPHT), low porosity, low permeability, complex pore structure, and high lime content, the log responses of these reservoirs have very complex characteristics, which makes it difficult to evaluate reservoir parameters accurately. In addition, most reservoirs in Ledong Block of the Yinggehai Basin in the South China Sea contain CO2, posing great difficulties for subsequent exploration and development. Accurate evaluation of CO2 layers is of paramount importance for the development of oil and gas fields. In this study, we used a method for the joint inversion of multiple well logs to evaluate the reservoirs and determine CO2 saturation level and other formation parameters. We optimized the joint inversion model based on the characteristics of the reservoirs in the Yinggehai Basin and adjusted the forward simulation model to consider the effects of high temperature and high pressure on gas density. In view of high lime content in the formations in this area, we adjusted the resistivity forward simulation model to consider the effect of lime content. The inversion results show that the values of porosity, permeability, and water saturation level obtained through inversion are largely consistent with the core data. The CO2 saturation level determined through joint inversion is 22%, which represents a deviation of less than 10% from the drilling system testing (DST) result, indicating that the joint inversion method is accurate. The error in the water saturation level determined through the joint inversion method is smaller than that in the calculated results from conventional multimineral inversion models. We performed forward simulation of the results calculated with the joint inversion method and compared the results of forward simulation with actual log curves. For the sandstone interval, the results of forward simulation are largely consistent with the actual log curves, indicating that the joint inversion method is accurate. In summary, the method presented in this paper can accurately determine reservoir parameters and provide strong support for the exploration and development of oil and gas fields in the Yinggehai Basin in the South China Sea.

12.
Sensors (Basel) ; 22(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36146307

ABSTRACT

Inventory is the basis of business activities; inventory management helps industries keep their inventories stocked with reasonable quantities, which ensures consumers demand while minimizing storage costs. The traditional manual inventory management has low efficiency and a high labor cost. In this paper, we used improved YOLOv3 to detect the cups stored on the warehouse shelves and counted their numbers to realize automated inventory management. The warehouse images are collected by the camera and transmitted to the industrial computer, which runs the YOLOv3 network. There are three feature maps in YOLOv3, the two smaller feature maps and the structure behind them are removed, and the k-means algorithm is used to optimize the default anchor size. Moreover, the detection range is limited to a specified area. Experiments show that, by eliminating those two feature maps, the network parameter is reduced from 235 MB to 212 MB, and detection FPS is improved from 48.15 to 54.88 while mAP is improved from 95.65% to 96.65% on our test dataset. The new anchors obtained by the k-means algorithm further improve the mAP to 96.82%. With those improvements, the average error rate of detection is reduced to 1.61%. Restricted detection areas eliminate irrelevant items to ensure the high accuracy of the detection result. The accurately counted number of cups and its change provide significant data for inventory management.

13.
Biomedicines ; 10(5)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35625759

ABSTRACT

Cholangiocarcinoma (CCA) is the second most common primary liver cancer with poor prognosis. The deregulation of a lot of oncogenic signaling molecules, such as receptor tyrosine kinases (RTKs), has been found to be associated with CCA progression. However, RTKs-based target therapy showed limited improvement suggesting a need to search for alternative targets for preventing CCA progression. To address this issue, we screened the oncogenic signal molecules upregulated in surgical tissues of CCAs. Interestingly, over-expression of hydrogen peroxide inducible clone-5 (Hic-5) coupled with over-activation of Src, AKT, JNK were observed in 50% of the cholangiocarcinoma with metastatic potential. To investigate whether these molecules may work together to trigger metastatic signaling, their up-and-down relationship was examined in a well-established cholangiocarcinoma cell line, HuCCT1. Src inhibitors PP1 (IC50, 13.4 µM) and dasatinib (IC50, 0.1 µM) significantly decreased both phosphorylated AKT (phosphor-AKT Thr450) and Hic-5 in HuCCT1. In addition, a knockdown of Hic-5 effectively suppressed activation of Src, JNK, and AKT. These implicated a positive cross-talk occurred between Hic-5 and Src for triggering AKT activation. Further, depletion of Hic-5 and inhibition of Src suppressed HuccT1 cell migration in a dose-dependent manner. Remarkably, prior transfection of Hic-5 siRNA for 24 h followed by treatment with PP1 or dasatinib for 24 h resulted in additive suppression of HuCCT1 migration. This suggested that a promising combinatory efficacy can be achieved by depletion of Hic-5 coupled with inhibition of Src. In the future, target therapy against CCA progression by co-targeting Hic-5 and Src may be successfully developed in vivo.

14.
Front Psychol ; 13: 860179, 2022.
Article in English | MEDLINE | ID: mdl-35619780

ABSTRACT

This study investigates the effect of shadow education on Hong Kong student wellbeing. The data were extracted from PISA 2018 (Programme For International Student Assessment 2018) of Hong Kong, and HLM analysis was conducted with student and school dimensions as the independent variables and student wellbeing as the dependent variable. The results in the student dimension showed that students attending shadow education had a significantly higher level of wellbeing than students who did not attend, and in the school dimension, that school competition climate had a significant impact on students' wellbeing; however, shadow education caused by schoolwork pressure and shadow education support appeared to have no significant impact on wellbeing. Furthermore, there was an interactive effect between competition climate and shadow education time which negatively affected wellbeing.

15.
Tzu Chi Med J ; 33(4): 332-338, 2021.
Article in English | MEDLINE | ID: mdl-34760627

ABSTRACT

Targeted therapy aiming at the metastatic signal pathway, such as that triggered by receptor tyrosine kinase (RTK), for the prevention of tumor progression is promising. However, RTK-based targeted therapy frequently suffered from drug resistance due to the co-expression of multiple growth factor receptors that may raise compensatory secondary signaling and acquired mutations after treatment. One alternative strategy is to manipulate the common negative regulators of the RTK signaling. Among them, Raf kinase inhibitory protein (RKIP) is highlighted and focused on this review. RKIP can associate with Raf-1, thus suppressing the downstream mitogen-activated protein kinase (MAPK) cascade. RKIP also negatively regulates other metastatic signal molecules including NF-κB, STAT3, and NOTCH1. In general, RKIP achieves this task via associating and blocking the activity of the critical molecules on upstream of the aforementioned pathways. One novel RKIP-related signaling involves reactive oxygen species (ROS). In our recent report, we found that PKCδ-mediated ROS generation may interfere with the association of RKIP with heat shock protein 60 (HSP60)/MAPK complex via oxidation of HSP60 triggered by the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate. The departure of RKIP may impact the downstream MAPK in two aspects. One is to trigger the Mt→cytosol translocation of HSP60 coupled with MAPKs. The other is to change the conformation of HSP60, favoring more efficient activation of the associated MAPK by upstream kinases in cytosol. It is worthy of investigating whether various RTKs capable of generating ROS can drive metastatic signaling via affecting RKIP in the same manner.

16.
Innovation (Camb) ; 2(3): 100130, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34557770

ABSTRACT

It has recently become clear that several human lineages coexisted with Homo sapiens during the late Middle and Late Pleistocene. Here, we report an archaic human fossil that throws new light on debates concerning the diversification of the Homo genus and the origin of H. sapiens. The fossil was recovered in Harbin city in northeastern China, with a minimum uranium-series age of 146 ka. This cranium is one of the best preserved Middle Pleistocene human fossils. Its massive size, with a large cranial capacity (∼1,420 mL) falling in the range of modern humans, is combined with a mosaic of primitive and derived characters. It differs from all the other named Homo species by presenting a combination of features, such as long and low cranial vault, a wide and low face, large and almost square orbits, gently curved but massively developed supraorbital torus, flat and low cheekbones with a shallow canine fossa, and a shallow palate with thick alveolar bone supporting very large molars. The excellent preservation of the Harbin cranium advances our understanding of several less-complete late Middle Pleistocene fossils from China, which have been interpreted as local evolutionary intermediates between the earlier species Homo erectus and later H. sapiens. Phylogenetic analyses based on parsimony criteria and Bayesian tip-dating suggest that the Harbin cranium and some other Middle Pleistocene human fossils from China, such as those from Dali and Xiahe, form a third East Asian lineage, which is a part of the sister group of the H. sapiens lineage. Our analyses of such morphologically distinctive archaic human lineages from Asia, Europe, and Africa suggest that the diversification of the Homo genus may have had a much deeper timescale than previously presumed. Sympatric isolation of small populations combined with stochastic long-distance dispersals is the best fitting biogeographical model for interpreting the evolution of the Homo genus.

17.
Innovation (Camb) ; 2(3): 100131, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34557771

ABSTRACT

As one of the most complete archaic human fossils, the Harbin cranium provides critical evidence for studying the diversification of the Homo genus and the origin of Homo sapiens. However, the unsystematic recovery of this cranium and a long and confused history since the discovery impede its accurate dating. Here, we carried out a series of geochemical analyses, including non-destructive X-ray fluorescence (XRF), rare earth elements (REE), and the Sr isotopes, to test the reported provenance of the Harbin cranium and get better stratigraphic constraints. The results show that the Harbin cranium has very similar XRF element distribution patterns, REE concentration patterns, and Sr isotopic compositions to those of the Middle Pleistocene-Holocene mammalian and human fossils recently recovered from the Harbin area. The sediments adhered in the nasal cavity of the Harbin cranium have a 87Sr/86Sr ratio of 0.711898, falling in the variation range measured in a core drilled near the Dongjiang Bridge, where the cranium was discovered during its reconstruction. The regional stratigraphic correlations indicate that the Harbin cranium was probably from the upper part of the Upper Huangshan Formation of the Harbin area, which has an optically stimulated luminescence dating constraint between 138 and 309 ka. U-series disequilibrium dating (n = 10) directly on the cranium suggests that the cranium is older than 146 ka. The multiple lines of evidence from our experiments consistently support the theory that the Harbin cranium is from the late Middle Pleistocene of the Harbin area. Our study also shows that geochemical approaches can provide reliable evidence for locating and dating unsystematically recovered human fossils, and potentially can be applied to other human fossils without clear provenance and stratigraphy records.

19.
Cells ; 10(9)2021 08 26.
Article in English | MEDLINE | ID: mdl-34571852

ABSTRACT

SNA is one of the essential EMT transcriptional factors capable of suppressing epithelial maker while upregulating mesenchymal markers. However, the mechanisms for SNA to transactivate mesenchymal markers was not well elucidated. Recently, we demonstrated that SNA collaborates with EGR1 and SP1 to directly upregulate MMP9 and ZEB1. Remarkably, a SNA-binding motif (TCACA) upstream of EGR/SP1 overlapping region on promoters was identified. Herein, we examined whether four other mesenchymal markers, lymphoid enhancer-binding factor (LEF), fibronectin (FN), cyclooxygenase 2 (COX2), and collagen type alpha I (COL1A1) are upregulated by SNA in a similar fashion. Expectedly, SNA is essential for expression of these mesenchymal genes. By deletion mapping and site directed mutagenesis coupled with dual luciferase promoter assay, SNA-binding motif and EGR1/SP1 overlapping region are required for TPA-induced transcription of LEF, FN, COX2 and COL1A1. Consistently, TPA induced binding of SNA and EGR1/SP1 on relevant promoter regions of these mesenchymal genes using ChIP and EMSA. Thus far, we found six of the mesenchymal genes are transcriptionally upregulated by SNA in the same fashion. Moreover, comprehensive screening revealed similar sequence architectures on promoter regions of other SNA-upregulated mesenchymal markers, suggesting that a general model for SNA-upregulated mesenchymal genes can be established.


Subject(s)
Carcinoma, Hepatocellular/genetics , Snail Family Transcription Factors/metabolism , Carcinoma, Hepatocellular/metabolism , Cell Line , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Cyclooxygenase 2/metabolism , Fibronectins/metabolism , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Lymphoid Enhancer-Binding Factor 1/metabolism , Mesenchymal Stem Cells/metabolism , Promoter Regions, Genetic/genetics , Protein Binding/genetics , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/physiology , Transcription Factors/metabolism , Transcriptional Activation/genetics
20.
Front Immunol ; 12: 618577, 2021.
Article in English | MEDLINE | ID: mdl-33815373

ABSTRACT

Abnormal immune responses and cytokine storm are involved in the development of severe dengue, a life-threatening disease with high mortality. Dengue virus-induced neutrophil NETosis response is associated with cytokine storm; while the role of viral factors on the elicitation of excessive inflammation mains unclear. Here we found that treatments of dengue virus envelope protein domain III (EIII), cellular binding moiety of virion, is sufficient to induce neutrophil NETosis processes in vitro and in vivo. Challenges of EIII in inflammasome Nlrp3-/- and Casp1-/- mutant mice resulted in less inflammation and NETosis responses, as compared to the wild type controls. Blockages of EIII-neutrophil interaction using cell-binding competitive inhibitor or selective Nlrp3 inflammasome inhibitors OLT1177 and Z-WHED-FMK can suppress EIII-induced NETosis response. These results collectively suggest that Nlrp3 inflammsome is a molecular target for treating dengue-elicited inflammatory pathogenesis.


Subject(s)
Extracellular Traps/immunology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Interaction Domains and Motifs/immunology , Viral Envelope Proteins/immunology , Animals , Cell Line , Dengue/immunology , Dengue/metabolism , Dengue/virology , Dengue Virus/immunology , Immunophenotyping , Mice , Mice, Knockout , Mitochondria/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Recombinant Proteins , Viral Envelope Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...