Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(45): e202312995, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37713602

ABSTRACT

Two-dimensional (2D) metal-organic framework (MOF) membranes are considered potential gas separation membranes of the next generation due to their structural diversity and geometrical functionality. However, achieving a rational structure design for a 2D MOF membrane and understanding the impact of MOF nanosheet stacking modes on membrane separation performance remain challenging tasks. Here, we report a novel kind of 2D MOF membrane based on [Cu2 Br(IN)2 ]n (IN=isonicotinato) nanosheets and propose that synergetic stacking modes of nanosheets have a significant influence on gas separation performance. The stacking of the 2D MOF nanosheets is controlled by solvent droplet dynamic behaviors at different temperatures of drop coating. Our 2D MOF nanosheet membranes exhibit high gas separation performances for H2 /CH4 (selectivity >290 with H2 permeance >520 GPU) and H2 /CO2 (selectivity >190 with H2 permeance >590 GPU) surpassing the Robeson upper bounds, paving a potential way for eco-friendly H2 separation.

2.
Sci Adv ; 6(18): eaax7270, 2020 May.
Article in English | MEDLINE | ID: mdl-32494660

ABSTRACT

Metal-organic frameworks (MOFs) have been attracting intensive attention because of their commendable potential in many applications. Postsynthetic modification for redesigning chemical characteristics and pore structures can greatly improve performance and expand functionality of MOF materials. Here, we develop a versatile vapor-phase linker exchange (VPLE) methodology for MOF modification. Through solvent-free and environment-friendly VPLE processing, various linker analogs with functional groups but not for straightforward MOF crystallization are inserted into frameworks as daughter building blocks. Besides single exchange for preparing MOFs with dual linkers, VPLE can further be performed by multistage operations to obtain MOF materials with multiple linkers and functional groups. The halogen-incorporated ZIFs exhibit good porosity, tunable molecular affinity, and impressive CO2/N2 and CH4/N2 adsorption selectivities up to 31.1 and 10.8, respectively, which are two to six times higher than those of conventional adsorbents. Moreover, VPLE can substantially enhance the compatibility of MOFs and polymers.

3.
Dalton Trans ; 48(30): 11196-11199, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31298241

ABSTRACT

Gas-liquid interfaces with unique physicochemical properties have great potential for the self-assembly of many materials. Herein, a concept of the autonomous self-crystallization of MOF films at air-water interfaces is reported. The free-standing ZIF-8 films with a large area of about 20 cm2 can be preferentially assembled only at the water surface. Under the influence of the atomically well-defined and amphiphilic interface on anisotropically polar linkers, the thus-prepared ZIF-8 films exhibit highly out-of-plane orientation and smooth-rough Janus crystalline facets.

4.
Sci Total Environ ; 685: 10-18, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31170591

ABSTRACT

Hydrous zirconium oxide (HZO) encapsulated alginate gel beads were synthesized for phosphate recovery from water. Importantly, we find that HZO/alginate gel beads (ZrA) crosslinked with Ca2+, Mg2+, Fe3+, Al3+, and Zr4+ are unstable under an intense alkali regeneration condition. Only Sr2+-crosslinked ZrA can endure a high alkali solution. ZrA possesses a high specific surface area (80.84 m2·g-1) and a mesoporous structure (15.3 nm and 0.196 cm3·g-1), which endow them with a high Langmuir adsorption capacity of 52.5 mg-P/g. ZrA can be easily recycled, and the mass loss of HZO is prevented. Furthermore, the strontium alginate gel framework protects the encapsulated HZO nanoparticles from adverse humic acid contamination. ZrA can be regenerated for at least 5 adsorption/desorption cycles. Cost analysis indicates the potential scale application feasibility for ZrA. This study provides a novel, simple, and environmentally benign solution to immobilize HZO for efficient phosphate recovery.

5.
Environ Sci Technol ; 53(7): 3764-3772, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30835449

ABSTRACT

In this work, a versatile postmodification strategy based polydopamine (PDA) grafting is reported for improving CO2 separation performance of MOF membranes. Owning to the strong bioadhesion, PDA can be deposited on the UiO-66 membrane through a simple and mild process. Since PDA impregnation in invalid nanometer-sized pinholes and grain boundaries of the MOF membrane suppress nonselective gas transports, the modified PDA/UiO-66 membrane exhibits significantly enhanced CO2/N2 and CO2/CH4 selectivities of 51.6 and 28.9, respectively, which are 2-3 times higher than the reported MOF membranes with similar permeance. Meanwhile, because PDA modification do not change UiO-66 intrinsic pores and membrane thickness is submicrometer-sized, the CO2 permeance is 2-3 orders of magnitude larger than those membranes with similar selectivity, up to 3.7 × 10-7 mol m-2 s-1 Pa-1 (1115 GPU). Moreover, the PDA/UiO-66 membrane with good reproducibility has excellent long-term stability for CO2 capture under moist condition in 36 h measurement period.


Subject(s)
Carbon , Metal-Organic Frameworks , Indoles , Polymers , Reproducibility of Results
6.
ACS Nano ; 12(9): 9309-9317, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30183255

ABSTRACT

Graphene oxide (GO) membranes have been attracting numerous attention due to their impressive performance in various applications, especially in water purification. However, because the swelling in water and polar organic solvents causes the increase of interlayer channels, GO membranes usually possess inferior rejection for subnanometer-sized molecules. How to control the transport channels of GO membranes at angstrom level is a significantly scientific and practical issue. Herein, a concept of external pressure regulation (EPR) is reported for restraining GO swelling and controlling its interlayer spacing precisely. Since anisotropic GO films only swell at vertical direction, the interlayer channels can be manipulated by externally unidirectional reverse force. Based on this concept, an EPR system with GO membranes is designed for water desalination by adjusting the external pressure that has high resolution. In cross-flow filtration, the compressed GO membranes show high KCl, NaCl, and CaCl2 rejections of 94%, 97%, and 98%, respectively, accompanied by large water permeance up to 25 L m-2 h-1 under low feed pressure of 2 bar, despite the fact that the semi-free spatial swelling of ultrathin GO layer above the substrate pores can deteriorate salt rejection. Our work provides a straightforward physical strategy to adjust the interlayer spacing of the membranes fabricated by two-dimensional nanosheets for achieving desired filtration capacity.

SELECTION OF CITATIONS
SEARCH DETAIL
...