Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.072
Filter
1.
Article in English | MEDLINE | ID: mdl-38709614

ABSTRACT

The traveling car renter problem (TCRP) is a variant of the Traveling Salesman Problem (TSP) wherein the salesman utilizes rented cars for travel. The primary objective of this problem is to identify a solution that minimizes the cumulative operating costs. Given its classification as a non-deterministic polynomial (NP) problem, traditional computers are not proficient in effectively resolving it. Conversely, DNA computing exhibits unparalleled advantages when confronted with NP-hard problems. This paper presents a DNA algorithm, based on the Adleman-Lipton model, as a proposed approach to address TCRP. The solution for TCRP can be acquired by following a series of fundamental steps, including coding, interaction, and extraction. The time computing complexity of the proposed DNA algorithm is O(n2m) for TCRP with n cities and m types of cars. By conducting simulation experiments, the solutions for certain instances of TCRP are computed and compared to those obtained by alternative algorithms. The proposed algorithm further illustrates the potential of DNA computing, as a form of parallel computing, to address more intricate large-scale problems.

2.
Article in English | MEDLINE | ID: mdl-38722747

ABSTRACT

BACKGROUND: Transoral endoscopic thyroidectomy vestibular approach (TOETVA) is newly applied technology. Carbon nanoparticles (CNs) are novel lymph node tracers that have been widely used in China to help remove central lymph nodes (CLNs) and protect the parathyroid glands (PGs) in open thyroid cancer surgery. This study is to evaluate the effectiveness and safety of CNs in TOETVA. MATERIALS AND METHODS: A total of 158 patients who underwent TOETVA with unilateral papillary thyroid carcinoma were enrolled in this study from March 2019 to February 2022. The participants were divided into a CNs group (n=88) and a control group (n=70), based on whether they received a intraoperative injection of CNs or not. Meanwhile, the CNs group were additionally divided into 2 subgroups, leakage subgroup (n=26) and standard subgroup (n=62). The 2 groups and subgroups were compared in terms of patient characteristics, perioperative clinical results, and postoperative outcomes. RESULTS: All common metrics had no significant differences were found between the CNs group and the control group (P>0.05). The standard subgroup of CNs group had advantage over the control group on PGs identification (59/62 vs. 59/70 for superior PG, 56/62 vs. 52/70 for inferior PG, P<0.05). Moreover, the standard subgroup harvested more CLNs than the control group (8.97±2.96 vs. 7.47±2.93, P<0.05). More operation time was spent on the leakage subgroup of CNs group than the control group (160.00±17.61 vs. 140.00±13.32, P<0.05). Meanwhile, the leakage subgroup had disadvantage on intraoperative hemorrhage (26.15±10.80 vs. 21.21±7.09, P<0.05) and hospital durations (4.96±0.72 vs. 4.57±0.69, P<0.05). Furthermore, the leakage group identified fewer inferior PG than the control group (7/26 vs. 52/70, P<0.05). Contrary to the standard subgroup, the CLNs of the leakage subgroup was also unsatisfactory compared with the control group (4.96±1.84 vs. 7.47±2.93, P<0.05). CONCLUSIONS: The application of CNs suspension tracing technology has a definite effect in TOETVA. It can improve the thoroughness of lymph node dissection in the central region and enhance recognition of the PG. However, refined extracapsular anatomy is indispensable to prevent CN leakage. Leaked CNs will also be counterproductive to the operation.

3.
Neurosci Lett ; : 137833, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38796095

ABSTRACT

Alzheimer's disease (AD) is characterized by abnormal inflammatory responses, and complement C5a (C5a) is known to initiate inflammation. This study aimed to investigate the associations between serum C5a, inflammatory responses, and cognitive function in AD patients. A total of 242 CE patients and 132 age-matched controls were included. Enzyme-linked immunosorbent assay revealed increased levels of C5a, interleukin (IL)-4, IL-6, IL-10, IL-1ß, and tumor necrosis factor (TNF)-α with advancing stages of AD. Pearson correlation coefficient and receiver operating characteristic curve revealed positive correlations between serum C5a levels, inflammatory cytokine levels, Neuropsychiatric Inventory (NPI) and Activities of Daily Living (ADL) scores, and negative correlations with Mini-mental State Examination (MMSE) and Montreal cognitive assessment (MoCA) scores. Serum C5a above 68.68 pg/mL could aid in the diagnosis of AD. Multivariable logistic analysis revealed that serum C5a was an independent risk factor for IL-1ß/IL-6/IL-10/TNF-α and an independent protective factor for IL-4. Higher serum C5a levels were associated with lower MMSE and MoCA scores. In conclusion, elevated serum C5a levels were beneficial for AD diagnosis and predictive of inflammation and cognitive dysfunction.

4.
Ecotoxicol Environ Saf ; 279: 116446, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38772138

ABSTRACT

The discovery of MPTP, an industrial chemical and contaminant of illicit narcotics, which causes parkinsonism in humans, non-human primates and rodents, has led to environmental pollutants exposure being convicted as key candidate in Parkinson's disease (PD) pathogenesis. Though MPTP-induced mitochondrial dysfunction and neuroinflammation are mainly responsible for the causative issue of MPTP neurotoxicity, the underlying mechanism involved remains unclear. Here, we reveal a novel signaling mechanism of CDK5-USP30-MAVS regulating MPTP/MPP+ induced PD. MPP+ (the toxic metabolite of MPTP) treatment not only led to the increased protein levels of USP30 but also to mitophagy inhibition, mitochondrial dysfunction, and MAVS-mediated inflammation in BV2 microglial cells. Both mitophagy stimulation (Urolithin A administration) and USP30 knockdown relieved MAVS-mediated inflammation via restoring mitophagy and mitochondrial function in MPP+-induced cell model. Notably, MPTP/MPP+-induced CDK5 activation regulated USP30 phosphorylation at serine 216 to stabilize USP30. Moreover, CDK5-USP30 pathway promoted MAVS-mediated inflammation in MPTP/MPP+-induced PD model. Inhibition of CDK5 not only had a protective effect on MPP+-induced cell model of PD via suppressing the upregulation of USP30 and the activation of MAVS inflammation pathway in vitro, but also prevented neurodegeneration in vivo and alleviated movement impairment in MPTP mouse model of PD. Overall, our study reveal that CDK5 blocks mitophagy through phosphorylating USP30 and activates MAVS inflammation pathway in MPTP/MPP+-induced PD model, which suggests that CDK5-USP30-MAVS signaling pathway represents a valuable treatment strategy for PD induced by environmental neurotoxic pollutants in relation to MPTP.

5.
Biochem Biophys Res Commun ; 720: 150118, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38776757

ABSTRACT

Tectorigenin (TEC) as a plant extract has the advantage of low side effects on metabolic dysfunction-associated steatohepatitis (MASH) treatment. Our previous study have shown that tRNA-derived RNA fragments (tRFs) associated with autophagy and pyroptosis in MASH, but whether TEC can mitigate MASH through tRFs-mediated mitophagy is not fully understood. This study aims to investigate whether TEC relies on tRFs to adjust the crosstalk of hepatocyte mitophagy with pyroptosis in MASH. Immunofluorescence results of PINK1 and PRKN with MitoTracker Green-labeled mitochondria verified that TEC enhanced mitophagy. Additionally, TEC inhibited pyroptosis, as reflected by the level of GSDME, NLRP3, IL-1ß, and IL-18 decreased after TEC treatment, while the effect of pyroptosis inhibition by TEC was abrogated by Pink1 silencing. We found that the upregulation expression of tRF-3040b caused by MASH was suppressed by TEC. The promotion of mitophagy and the suppression of pyroptosis induced by TEC were abrogated by tRF-3040b mimics. TEC reduced lipid deposition, inflammation, and pyroptosis, and promoted mitophagy in mice, but tRF-3040b agomir inhibited these effects. In summary, our findings provided that TEC significantly reduced the expression of tRF-3040b to enhance mitophagy, thereby inhibiting pyroptosis in MASH. We elucidated a powerful theoretical basis and provided safe and effective potential drugs for MASH with the prevention and treatment.

6.
Poult Sci ; 103(7): 103788, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38692177

ABSTRACT

This study aims to identify candidate genes related to ovarian development after ovarian tissue transplantation through transcriptome sequencing (RNA-seq) and expression network analyses, as well as to provide a reference for determining the molecular mechanism of improving ovarian development following ovarian tissue transplantation. We collected ovarian tissues from 15 thirty-day-old ducks and split each ovary into 4 equal portions of comparable sizes before orthotopically transplanting them into 2-day-old ducks. Samples were collected on days 0 (untransplanted), 3, 6, and 9. The samples were paraffin sectioned and then subjected to Hematoxylin-Eosin (HE) staining and follicular counting. We extracted RNA from ovarian samples via the Trizol method to construct a transcriptome library, which was then sequenced by the Illumina Novaseq 6000 sequencing platform. The sequencing results were examined for differentially expressed genes (DEG) through gene ontology (GO) function and the Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses, gene set enrichment analysis (GSEA), weighted correlation network analysis (WGCNA), and protein-protein interaction (PPI) networks. Some of the candidate genes were selected for verification using real-time fluorescence quantitative PCR (qRT-PCR). Histological analysis revealed a significant reduction in the number of morphologically normal follicles at 3, 6, and 9 d after ovarian transplantation, along with significantly higher abnormality rates (P < 0.05). The transcriptome analysis results revealed 2,114, 2,224, and 2,257 upregulated DEGs and 2,647, 2,883, and 2,665 downregulated DEGs at 3, 6, and 9 d after ovarian transplantation, respectively. Enrichment analysis revealed the involvement multiple pathways in inflammatory signaling, signal transduction, and cellular processes. Furthermore, WGCNA yielded 13 modules, with 10, 4, and 6 candidate genes mined at 3, 6 and 9 d after ovarian transplantation, respectively. Transcription factor (TF) prediction showed that STAT1 was the most important TF. Finally, the qRT-PCR verification results revealed that 12 candidate genes exhibited an expression trend consistent with sequencing data. In summary, significant differences were observed in the number of follicles in duck ovaries following ovarian transplantation. Candidate genes involved in ovarian vascular remodeling and proliferation were screened using RNA-Seq and WGCNA.

7.
J Affect Disord ; 358: 383-390, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38735583

ABSTRACT

BACKGROUND: Healthier lifestyle decreased the risk of mental disorders (MDs) such as depression and anxiety. However, research on the effects of a comprehensive healthy lifestyle on their progression is lacking. METHODS: 385,704 individuals without baseline MDs from the UK Biobank cohort were included. A composite healthy lifestyle score was computed by assessing alcohol intake, smoking status, television viewing time, physical activity, sleep duration, fruit and vegetable intake, oily fish intake, red meat intake, and processed meat intake. Follow-up utilized hospital and death register records. Multistate model was used to examine the role of healthy lifestyle on the progression of specific MDs, while a piecewise Cox regression model was utilized to assess the influence of healthy lifestyle across various phases of disease progression. RESULTS: Higher lifestyle score reduced risks of transitions from baseline to anxiety and depression, as well as from anxiety and depression to comorbidity, with corresponding hazard ratios (HR) and 95 % confidence intervals (CI) of 0.94 (0.93, 0.95), 0.90 (0.89, 0.91), 0.94 (0.91, 0.98), and 0.95 (0.92, 0.98), respectively. Healthier lifestyle decreased the risk of transitioning from anxiety to comorbidity within 2 years post-diagnosis, with HR 0.93 (0.88, 0.98). Higher lifestyle scores at 2-4 years and 4-6 years post-depression onset were associated with reduced risk of comorbidity, with HR 0.93 (0.87, 0.99) and 0.92 (0.86, 0.99), respectively. LIMITATION: The generalizability to other ethnic groups is limited. CONCLUSION: This study observed a protective role of holistic healthy lifestyle in the trajectory of MDs and contributed to identifying critical progression windows.


Subject(s)
Biological Specimen Banks , Disease Progression , Healthy Lifestyle , Humans , Male , Female , Middle Aged , United Kingdom/epidemiology , Prospective Studies , Incidence , Aged , Adult , Comorbidity , Anxiety/epidemiology , Depression/epidemiology , Mental Disorders/epidemiology , Exercise , Proportional Hazards Models , Alcohol Drinking/epidemiology , Smoking/epidemiology , UK Biobank
8.
J Med Chem ; 67(9): 7635-7646, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38661304

ABSTRACT

The T-cell receptor (TCR) is a crucial molecule in cellular immunity. The single-chain T-cell receptor (scTCR) is a potential format in TCR therapeutics because it eliminates the possibility of αß-TCR mispairing. However, its poor stability and solubility impede the in vitro study and manufacturing of therapeutic applications. In this study, some conserved structural motifs are identified in variable domains regardless of germlines and species. Theoretical analysis helps to identify those unfavored factors and leads to a general strategy for stabilizing scTCRs by substituting residues at exact IMGT positions with beneficial propensities on the consensus sequence of germlines. Several representative scTCRs are displayed to achieve stability optimization and retain comparable binding affinities with the corresponding αß-TCRs in the range of µM to pM. These results demonstrate that our strategies for scTCR engineering are capable of providing the affinity-enhanced and specificity-retained format, which are of great value in facilitating the development of TCR-related therapeutics.


Subject(s)
Receptors, Antigen, T-Cell , Humans , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Protein Stability , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Amino Acid Sequence , Models, Molecular , Protein Engineering , Protein Binding
9.
J Neuropathol Exp Neurol ; 83(6): 396-415, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38613823

ABSTRACT

Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is detectable at autopsy in more than one-third of people beyond age 85 years and is robustly associated with dementia independent of other pathologies. Although LATE-NC has a large impact on public health, there remain uncertainties about the underlying biologic mechanisms. Here, we review the literature from human studies that may shed light on pathogenetic mechanisms. It is increasingly clear that certain combinations of pathologic changes tend to coexist in aging brains. Although "pure" LATE-NC is not rare, LATE-NC often coexists in the same brains with Alzheimer disease neuropathologic change, brain arteriolosclerosis, hippocampal sclerosis of aging, and/or age-related tau astrogliopathy (ARTAG). The patterns of pathologic comorbidities provide circumstantial evidence of mechanistic interactions ("synergies") between the pathologies, and also suggest common upstream influences. As to primary mediators of vulnerability to neuropathologic changes, genetics may play key roles. Genes associated with LATE-NC include TMEM106B, GRN, APOE, SORL1, ABCC9, and others. Although the anatomic distribution of TDP-43 pathology defines the condition, important cofactors for LATE-NC may include Tau pathology, endolysosomal pathways, and blood-brain barrier dysfunction. A review of the human phenomenology offers insights into disease-driving mechanisms, and may provide clues for diagnostic and therapeutic targets.


Subject(s)
TDP-43 Proteinopathies , Humans , TDP-43 Proteinopathies/pathology , TDP-43 Proteinopathies/genetics , Aging/pathology , Aging/genetics , Risk Factors , Limbic System/pathology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Aged, 80 and over , Dementia
10.
World J Diabetes ; 15(4): 645-653, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38680689

ABSTRACT

BACKGROUND: Patients with type 2 diabetes mellitus (T2DM) have large fluctuations in blood glucose (BG), abnormal metabolic function and low immunity to varying degrees, which increases the risk of malignant tumor diseases and affects the efficacy of tumor chemotherapy. Controlling hyperglycemia may have important therapeutic implications for cancer patients. AIM: To clarify the influence of BG fluctuations on chemotherapy efficacy and safety in T2DM patients complicated with lung carcinoma (LC). METHODS: The clinical data of 60 T2DM + LC patients who presented to the First Affiliated Hospital of Ningbo University between January 2019 and January 2021 were retrospectively analyzed. All patients underwent chemotherapy and were grouped as a control group (CG; normal BG fluctuation with a mean fluctuation < 3.9 mmol/L) and an observation group (OG; high BG fluctuation with a mean fluctuation ≥ 3.9 mmol/L) based on their BG fluctuations, with 30 cases each. BG-related indices, tumor markers, serum inflammatory cytokines and adverse reactions were comparatively analyzed. Pearson correlation analysis was performed to analyze the correlation between BG fluctuations and tumor markers. RESULTS: The fasting blood glucose and 2-hour postprandial blood glucose levels in the OG were notably elevated compared with those in the CG, together with markedly higher mean amplitude of glycemic excursions (MAGE), mean of daily differences, largest amplitude of glycemic excursions and standard deviation of blood glucose (P < 0.05). In addition, the OG exhibited evidently higher levels of carbohydrate antigen 19-9, carbohydrate antigen 125, carcinoembryonic antigen, neuron-specific enolase, cytokeratin 19, tumor necrosis factor-α, interleukin-6, and high-sensitivity C-reactive protein than the CG (P < 0.05). Pearson analysis revealed a positive association of MAGE with serum tumor markers. The incidence of adverse reactions was significantly higher in the OG than in the CG (P < 0.05). CONCLUSION: The greater the BG fluctuation in LC patients after chemotherapy, the more unfavorable the therapeutic effect of chemotherapy; the higher the level of tumor markers and inflammatory cytokines, the more adverse reactions the patient experiences.

11.
Article in English | MEDLINE | ID: mdl-38683639

ABSTRACT

Purpose: There has been limited evidence for the association between pulse pressure (PP) and proteinuria in prediabetes. The aim of our study was to explore the association between PP and albuminuria in community-dwelling Chinese adults with prediabetes. Materials and Methods: PP and urinary albumin-to-creatinine ratio (ACR) were measured in 2012 prediabetic patients and 3596 control subjects with normal glucose tolerance. Multivariate logistic regression models were used to evaluate the possible association of PP with the risk of presence of albuminuria. Results: PP was positively associated with the presence of albuminuria, and subjects in the higher PP quartiles had higher urinary ACR and presence of albuminuria as compared with those in the lowest quartile in both prediabetes and control groups (all P < 0.01). Multivariate logistic regression analysis demonstrated that the highest PP quartile was positively associated with increased risk of presence of albuminuria in all prediabetic subjects [odds ratio (OR): 2.289, 95% confidence interval (CI) 1.364-3.842, P < 0.01) and prediabetic subjects without anti-hypertensive drugs (OR: 1.932, 95% CI 1.116-3.343, P < 0.01), whereas higher PP quartile has nothing to do with the risk of presence of albuminuria in control subjects with and without anti-hypertensive drugs after adjustment for potential confounders (all P > 0.01). Consistently, stratified analysis showed that in the prediabetes group, the risks of presence of albuminuria progressively elevated with increasing PP quartiles in men, those aged 60 years or older, and with overweight/obesity, normal high-density lipoprotein cholesterol, and appropriate low-density lipoprotein cholesterol (all P for trend <0.05). Conclusion: Higher PP is independently related to increased risk of presence of albuminuria in community-dwelling Chinese adults with prediabetes.

12.
Article in English | MEDLINE | ID: mdl-38684792

ABSTRACT

OBJECTIVES: Large Language Models (LLMs) such as ChatGPT and Med-PaLM have excelled in various medical question-answering tasks. However, these English-centric models encounter challenges in non-English clinical settings, primarily due to limited clinical knowledge in respective languages, a consequence of imbalanced training corpora. We systematically evaluate LLMs in the Chinese medical context and develop a novel in-context learning framework to enhance their performance. MATERIALS AND METHODS: The latest China National Medical Licensing Examination (CNMLE-2022) served as the benchmark. We collected 53 medical books and 381 149 medical questions to construct the medical knowledge base and question bank. The proposed Knowledge and Few-shot Enhancement In-context Learning (KFE) framework leverages the in-context learning ability of LLMs to integrate diverse external clinical knowledge sources. We evaluated KFE with ChatGPT (GPT-3.5), GPT-4, Baichuan2-7B, Baichuan2-13B, and QWEN-72B in CNMLE-2022 and further investigated the effectiveness of different pathways for incorporating LLMs with medical knowledge from 7 distinct perspectives. RESULTS: Directly applying ChatGPT failed to qualify for the CNMLE-2022 at a score of 51. Cooperated with the KFE framework, the LLMs with varying sizes yielded consistent and significant improvements. The ChatGPT's performance surged to 70.04 and GPT-4 achieved the highest score of 82.59. This surpasses the qualification threshold (60) and exceeds the average human score of 68.70, affirming the effectiveness and robustness of the framework. It also enabled a smaller Baichuan2-13B to pass the examination, showcasing the great potential in low-resource settings. DISCUSSION AND CONCLUSION: This study shed light on the optimal practices to enhance the capabilities of LLMs in non-English medical scenarios. By synergizing medical knowledge through in-context learning, LLMs can extend clinical insight beyond language barriers in healthcare, significantly reducing language-related disparities of LLM applications and ensuring global benefit in this field.

13.
J Fungi (Basel) ; 10(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38667925

ABSTRACT

Flavonoids are a diverse family of natural compounds that are widely distributed in plants and play a critical role in plant growth, development, and stress adaptation. In recent years, the biosynthesis of flavonoids in plants has been well-researched, with the successive discovery of key genes driving this process. However, the regulation of flavonoid biosynthesis in fungi remains unclear. Stropharia rugosoannulata is an edible mushroom known for its high nutritional and pharmacological value, with flavonoids being one of its main active components. To investigate the flavonoid content of S. rugosoannulata, a study was conducted to extract and determine the total flavonoids at four stages: young mushroom (Ym), gill (Gi), maturation (Ma), and parachute-opening (Po). The findings revealed a gradual increase in total flavonoid concentration as the fruiting body developed, with significant variations observed between the Ym, Gi, and Ma stages. Subsequently, we used UPLC-MS/MS and transcriptome sequencing (RNA-seq) to quantify the flavonoids and identify regulatory genes of Ym, Gi, and Ma. In total, 53 flavonoid-related metabolites and 6726 differentially expressed genes (DEGs) were identified. Through KEGG pathway enrichment analysis, we identified 59 structural genes encoding flavonoid biosynthesis-related enzymes, most of which were up-regulated during the development of the fruiting body, consistent with the accumulation of flavonoids. This research led to the establishment of a comprehensive transcriptional metabolic regulatory network encompassing flavonoids, flavonoid synthases, and transcription factors (TFs). This represents the first systematic exploration of the molecular mechanism of flavonoids in the fruiting of fungi, offering a foundation for further research on flavonoid mechanisms and the breeding of high-quality S. rugosoannulata.

14.
Zhen Ci Yan Jiu ; 49(4): 376-383, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38649205

ABSTRACT

OBJECTIVES: To observe the effects of moxibustion on blood lipid metabolism, pathological morphology of thoracic aorta, and the expression of silent information regulator 1 (SIRT1) and forkhead box transcription factor O3a (FOXO3a) in ApoE-/- atherosclerosis (AS) mice, so as to explore the potential mechanism of moxibustion in preventing and treating AS. METHODS: Ten C57BL/6J mice were fed a normal diet as the control group, and 30 ApoE-/- mice were fed a high-fat diet to establish the AS model, which were randomly divided into the model group, simvastatin group, and moxibustion group, with 10 mice in each group. From the first day of modeling, mice in the moxibustion group received mild moxibustion treatment at "Shenque"(CV8), "Yinlingquan"(SP9), bilateral "Neiguan"(PC6) and "Xuehai"(SP10) for 30 min per time;the mice in the simvastatin group were given simvastatin orally (2.5 mg·kg-1·d-1), with both treatments given once daily, 5 times a week, with a total intervention period of 12 weeks. The body weight and general condition of the mice were observed and recorded during the intervention period. After the intervention, the contents of serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured using an automated biochemistry analyzer. Hematoxylin eosin (HE) staining was used to observe the pathological morphology of the thoracic aorta. ELISA was used to measure the contents of serum oxidized low-density lipoprotein (ox-LDL) and superoxide dismutase (SOD) activity. Western blot and real-time fluorescent quantitative PCR analysis were used to detect the expression levels of SIRT1 and FOXO3a protein and mRNA in the thoracic aorta. RESULTS: Compared with the control group, body weight at the 8th and 12th week, serum TC, TG, LDL-C, and ox-LDL contents of the model group mice were significantly increased(P<0.05, P<0.01), while the HDL-C contents, SOD activity, and the expression levels of SIRT1 protein and mRNA in the thoracic aorta were significantly decreased(P<0.05, P<0.01). HE staining showed thickening of the aortic intima, endothelial cell degeneration, swelling, and shedding. Compared with the model group, body weight at the 8th and 12th week, serum TC, TG, LDL-C, and ox-LDL contents of mice in the simvastatin group and moxibustion group were significantly decreased(P<0.01), while the serum SOD activity, expression levels of SIRT1 protein and mRNA in the thoracic aorta were significantly increased(P<0.01). The HDL-C contents were significantly increased in the simvastatin group(P<0.05). The thoracic aortic structure was more intact in both groups, with a more regular lumen and orderly arrangement of the elastic membrane in the media, and a slight amount of endothelial cell degeneration and swelling in the intima. There was no significant difference in the evaluated indexes between the moxibustion group and the simvastatin group and the pathological changes in the thoracic aorta were similar between the two groups. CONCLUSIONS: Moxibustion can reduce the body weight of AS model mice, regulate lipid levels, repair vascular intima, and alleviate endothelial damage. Its mechanism of action may be related to the regulation of the SIRT1/FOXO3a signaling pathway to improve oxidative damage.


Subject(s)
Apolipoproteins E , Atherosclerosis , Forkhead Box Protein O3 , Moxibustion , Sirtuin 1 , Animals , Humans , Male , Mice , Acupuncture Points , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/therapy , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction , Sirtuin 1/metabolism , Sirtuin 1/genetics , Triglycerides/blood , Triglycerides/metabolism
15.
Pest Manag Sci ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619050

ABSTRACT

BACKGROUND: Leaf feeders, such as Spodoptera frugiperda and Spodoptera litura, and stem borers Ostrinia furnacalis and Chilo suppressalis, occupy two different niches and are well adapted to their particular environments. Borer larvae burrow and inhabit the interior of stems, which are relatively dark. By contrast, the larvae of leaf feeders are exposed to sunlight during feeding. We therefore designed series of experiments to evaluate the effect of light intensity (0, 2000, and 10 000 lx) on these pests with different feeding modes. RESULTS: The development of all four pests was significantly delayed at 0 lx. Importantly, light intensity affected the development of both male and female larvae of borers, but only significantly affected male larvae of leaf feeders. Furthermore, the proportion of female offspring of leaf feeders increased with increasing light intensity (S. frugiperda: 33.89%, 42.26%, 57.41%; S. litura: 38.90%, 51.75%, 65.08%), but no significant differences were found in stem borers. This research also revealed that the survival rate of female leaf feeders did not vary across light intensities, but that of males decreased with increasing light intensity (S. frugiperda: 97.78%, 85.86%, 61.21%; S. litura: 95.83%, 73.54%, 58.99%). CONCLUSION: These results improve our understanding of how light intensity affects sex differences in important lepidopteran pests occupying different feeding niches and their ecological interactions with abiotic factors in agroecosystems. © 2024 Society of Chemical Industry.

16.
Anal Chem ; 96(15): 6065-6071, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38569047

ABSTRACT

The conventional lateral flow immunoassay (LFIA) method using colloidal gold nanoparticles (Au NPs) as labeling agents faces two inherent limitations, including restricted sensitivity and poor quantitative capability, which impede early viral infection detection. Herein, we designed and synthesized CsPbBr3 perovskite quantum dot-based composite nanoparticles, CsPbBr3@SiO2@Fe3O4 (CSF), which integrated fluorescence detection and magnetic enrichment properties into LFIA technology and achieved rapid, sensitive, and convenient quantitative detection of the SARS-CoV-2 virus N protein. In this study, CsPbBr3 served as a high-quantum-yield fluorescent signaling probe, while SiO2 significantly enhanced the stability and biomodifiability of CsPbBr3. Importantly, the SiO2 shell shows relatively low absorption or scattering toward fluorescence, maintaining a quantum yield of up to 74.4% in CsPbBr3@SiO2. Assembly of Fe3O4 nanoparticles mediated by PEI further enhanced the method's sensitivity and reduced matrix interference through magnetic enrichment. Consequently, the method achieved a fluorescent detection range of 1 × 102 to 5 × 106 pg·mL-1 after magnetic enrichment, with a limit of detection (LOD) of 58.8 pg·mL-1, representing a 13.3-fold improvement compared to nonenriched samples (7.58 × 102 pg·mL-1) and a 2-orders-of-magnitude improvement over commercial colloidal gold kits. Furthermore, the method exhibited 80% positive and 100% negative detection rates in clinical samples. This approach holds promise for on-site diagnosis, home-based quantitative tests, and disease procession evaluation.


Subject(s)
Metal Nanoparticles , Silicon Dioxide , Gold , Fluorescent Dyes , Immunoassay/methods , Gold Colloid
17.
Heart ; 110(11): 776-782, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38514173

ABSTRACT

BACKGROUND: To assess the roles of diabetic microvascular disease and modifiable risk factors and their combination in the development of arrhythmias. METHODS: We included participants with type 2 diabetes (T2D) who were free of arrhythmias during recruitment in the UK Biobank study. The associations of microvascular disease states (defined by the presence of retinopathy, peripheral neuropathy or chronic kidney disease), four modifiable arrhythmic risk factors (body mass index, smoking, systolic blood pressure and glycosylated haemoglobin) and their joint associations with incident arrhythmias were examined. RESULTS: Among the 25 632 participants with T2D, 1705 (20.1%) of the 8482 with microvascular disease and 2017 (11.8%) of the 17 150 without microvascular disease developed arrhythmias during a median follow-up of 12.3 years. Having any of the three microvascular diseases was associated with a 48% increase in the hazard of developing arrhythmias. Incorporating microvascular disease states into a model alongside 11 traditional risk factors significantly enhanced arrhythmia prediction. Furthermore, individuals with microvascular disease who had optimal levels of zero to one, two, three or four arrhythmic risk factors showed an HR of 2.05 (95% CI 1.85, 2.27), 1.67 (95% CI 1.53, 1.83), 1.35 (95% CI 1.22, 1.50) and 0.91 (95% CI 0.73, 1.13), respectively, compared with those without microvascular disease. CONCLUSIONS: Although microvascular disease, a non-traditional risk factor, was associated with incident arrhythmias in individuals with T2D, having optimal levels of risk factors may mitigate this risk.


Subject(s)
Arrhythmias, Cardiac , Diabetes Mellitus, Type 2 , Diabetic Angiopathies , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Male , Female , Middle Aged , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/etiology , Incidence , United Kingdom/epidemiology , Risk Factors , Aged , Diabetic Angiopathies/epidemiology , Diabetic Angiopathies/diagnosis , Risk Assessment/methods , Body Mass Index , Glycated Hemoglobin/metabolism , Glycated Hemoglobin/analysis , Smoking/adverse effects , Smoking/epidemiology
18.
Toxicol Sci ; 199(2): 163-171, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38547390

ABSTRACT

Prenatal developmental toxicity research focuses on understanding the potential adverse effects of environmental agents, drugs, and chemicals on the development of embryos and fetuses. Traditional methods involve animal testing, but ethical concerns and the need for human-relevant models have prompted the exploration of alternatives. Pluripotent stem cells (PSCs) are versatile cells with the unique ability to differentiate into any cell type, serving as a foundational tool for studying human development. Two-dimensional (2D) PSC models are often chosen for their ease of use and reproducibility for high-throughput screening. However, they lack the complexity of an in vivo environment. Alternatively, three-dimensional (3D) PSC models, such as organoids, offer tissue architecture and intercellular communication more reminiscent of in vivo conditions. However, they are complicated to produce and analyze, usually requiring advanced and expensive techniques. This review discusses recent advances in the use of human PSCs differentiated into brain and heart lineages and emerging tools and methods that can be combined with PSCs to help address important scientific questions in the area of developmental toxicology. These advancements and new approach methods align with the push for more relevant and predictive developmental toxicity assessment, combining innovative techniques with organoid models to advance regulatory decision-making.


Subject(s)
Cell Differentiation , Pluripotent Stem Cells , Toxicity Tests , Humans , Toxicity Tests/methods , Pluripotent Stem Cells/drug effects , Cell Differentiation/drug effects , Animals , Organoids/drug effects , Brain/drug effects , Brain/embryology
19.
Medicine (Baltimore) ; 103(10): e37364, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457571

ABSTRACT

Obesity is a risk factor for glucose metabolism disorder. This study explored the association between the tri-ponderal mass index (TMI) and indicators of glucose metabolism disorder in children with obesity in China. This retrospective case-control study included children aged 3 to 18 years old diagnosed with obesity at Jiangxi Provincial Children's Hospital (China) between January 2020 and April 2022. Demographic and clinical characteristics were obtained from the medical records. Factors associated with glucose metabolism disorder were explored by logistic regression analysis. Pearson correlations were calculated to evaluate the relationships between TMI and indicators of glucose metabolism disorder. The analysis included 781 children. The prevalence of glucose metabolism disorder was 22.0% (172/781). The glucose metabolism disorder group had an older age (11.13 ±â€…2.19 vs 10.45 ±â€…2.33 years old, P = .001), comprised more females (76.8% vs 66.9%, P = .008), had a higher Tanner index (P = .001), and had a larger waist circumference (89.00 [82.00-95.00] vs 86.00 [79.00-93.75] cm, P = .025) than the non-glucose metabolism disorder group. There were no significant differences between the glucose metabolism disorder and non-glucose metabolism disorder groups in other clinical parameters, including body mass index (26.99 [24.71-30.58] vs 26.57 [24.55-29.41] kg/m2) and TMI (18.38 [17.11-19.88] vs 18.37 [17.11-19.88] kg/m3). Multivariable logistic regression did not identify any factors associated with glucose metabolism disorder. Furthermore, TMI was only very weakly or negligibly correlated with indicators related to glucose metabolism disorder. TMI may not be a useful indicator to screen for glucose metabolism disorder in children with obesity in China.


Subject(s)
Pediatric Obesity , Child , Female , Humans , Child, Preschool , Adolescent , Pediatric Obesity/complications , Pediatric Obesity/epidemiology , Case-Control Studies , Retrospective Studies , Body Mass Index , Risk Factors
20.
Opt Express ; 32(5): 8129-8145, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38439478

ABSTRACT

Photocathodes play a crucial role in photoelectronic imaging and vacuum electronic devices. The quantum efficiency of photocathodes, which determines their performance, can be enhanced through materials engineering. However, the quantum efficiency of conventional planar photocathodes remains consistently low, at around 25%. In this paper, we propose what we believe is a novel structure of AlGaN nanowire array to address this issue. We investigate the photoemission characteristics of the nanowire array using the "four-step" process, which takes into account optical absorption, electron transportation, electron emission, and electron collection. We compare the quantum efficiency of nanowire arrays with different structure sizes and Al components. After studying the effect of incident light at various angles on the nanowire array photocathode, we identify the optimal dimensional parameters: a height of 400∼500 nm and a wire width of 200∼300 nm. Furthermore, we improved the collection efficiency of the photocathode by introducing a built-in/external electric field, and obtained a 104.4% enhancement of the collection current with the built-in electric field, meanwhile the photocurrent was increased by 87% compared to the case without the external electric field. These findings demonstrate the potential of optimizing photocathode performance through the development of a novel model and adjustment of parameters, offering a promising approach for photocathode applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...