Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 49(1): 100-109, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403343

ABSTRACT

Hawthorn has the efficacy of eliminating turbidity and lowering the blood lipid level, and it is used for treating hyperlipidemia in clinic. However, the bioactive components of hawthorn are still unclear. In this study, the spectrum-effect relationship was employed to screen the bioactive components of hawthorn in the treatment of hyperlipidemia, and then the bioactive components screened out were verified in vivo. Furthermore, the quality control method for hawthorn was developed based on liquid chromatography-mass spectrometry(LC-MS). The hyperlipidemia model of rats was built, and different polar fractions of hawthorn extracts and their combinations were administrated by gavage. The effects of different hawthorn extract fractions on the total cholesterol(TC), triglycerides(TG), and low-density lipoprotein-cholesterol(LDL-C) in the serum of model rats were studied. The orthogonal projections to latent structures(OPLS) algorithm was used to establish the spectrum-effect relationship model between the 24 chemical components of hawthorn and the pharmacodynamic indexes, and the bioactive components were screened out and verified in vivo. Finally, 10 chemical components of hawthorn, including citric acid and quinic acid, were selected to establish the method for evaluating hawthorn quality based on LC-MS. The results showed that different polar fractions of hawthorn extracts and their combinations regulated the TG, TC, and LDL-C levels in the serum of the model rats. The bioactive components of hawthorn screened by the OPLS model were vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside, rutin, citric acid, malic acid, and quinic acid. The 10 chemical components of hawthorn, i.e., citric acid, quinic acid, rutin, gallic acid, vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside, malic acid, vanillic acid, neochlorogenic acid, and fumaric acid were determined, with the average content of 38, 11, 0.018, 0.009 5, 0.037, 0.017, 8.1, 0.009 5, 0.073, and 0.98 mg·g~(-1), respectively. This study provided a scientific basis for elucidating the material basis of hawthorn in treating hyperlipidemia and developed a content determination method for evaluating the quality of hawthorn.


Subject(s)
Crataegus , Hyperlipidemias , Rats , Animals , Crataegus/chemistry , Cholesterol, LDL , Quinic Acid , Plant Extracts/pharmacology , Plant Extracts/chemistry , Rutin/chemistry , Lipids , Hyperlipidemias/drug therapy , Quality Control , Glucosides , Citric Acid
2.
Zhongguo Zhong Yao Za Zhi ; 48(4): 958-965, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36872266

ABSTRACT

This study was aimed at identifying the bioactive components of the crude and stir-baked hawthorn for invigorating spleen and promoting digestion, respectively, to clarify the processing mechanism of hawthorn by applying the partial least squares(PLS) algorithm to build the spectrum-effect relationship model. Firstly, different polar fractions of crude and stir-baked hawthorn aqueous extracts and combinations of different fractions were prepared, respectively. Then, the contents of 24 chemical components were determined by ultra-high performance liquid chromatography-mass spectrometry. The effects of different polar fractions of crude hawthorn and stir-baked hawthorn aqueous extracts and combinations of different fractions were evaluated by measuring the gastric emptying rate and small intestinal propulsion rate. Finally, the PLS algorithm was used to establish the spectrum-effect relationship model. The results showed that there were significant differences in the contents of 24 chemical components for different polar fractions of crude and stir-baked hawthorn aqueous extracts and combinations of different fractions, and the gastric emptying rate and small intestinal propulsion rate of model rats were improved by administration of different polar fractions of crude and stir-baked hawthorn aqueous extracts and combinations of different fractions. The bioactive components of crude hawthorn identified by PLS models were vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside, neochlorogenic acid, rutin, gallic acid, vanillic acid, citric acid, malic acid, quinic acid and fumaric acid, while neochlorogenic acid, cryptochlorogenic acid, rutin, gallic acid, vanillic acid, citric acid, quinic acid and fumaric acid were the bioactive components of stir-baked hawthorn. This study provided data support and scientific basis for identifying the bioactive components of crude and stir-baked hawthorn, and clarifying the processing mechanism of hawthorn.


Subject(s)
Crataegus , Spleen , Animals , Rats , Quinic Acid , Least-Squares Analysis , Vanillic Acid , Algorithms , Digestion
SELECTION OF CITATIONS
SEARCH DETAIL
...