Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 514
Filter
1.
Adv Sci (Weinh) ; : e2403224, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822534

ABSTRACT

The advancement of Zn-Se batteries has been hindered by significant challenges, such as the sluggish kinetics of Se cathodes, limited Se loading, and uncontrollable formation of Zn dendrites. In this study, a bidirectional optimization strategy is devised for both cathode and anode to bolster the performance of Zn-Se batteries. A novel bowl-in-ball structured carbon (BIBCs) material is synthesized to serve as a nanoreactor, in which tin-based materials are grown and derived in situ to construct cathodes and anodes. Within the cathode, the multifunctional host material (SnSe@BIBCs) exhibits large adsorption capacity for selenium, and demonstrates supreme catalytic properties and spatially confined characteristics toward the selenium reduction reaction (SeRR). On the anode, Sn@BIBCs displays triple-induced properties, including the zincophilic of the internal metallic Sn, the homogenized spatial electric field from the 3D spatial structure, and the curvature effect of the bowl-shaped carbon. Collectively, these factors induce preferential nucleation of Zn, ensuring its uniform deposition. As a result, the integrated Zn-Se battery system achieves a remarkable specific capacity of up to 603 mAh g-1 and an impressive energy density of 581 W kg-1, highlighting its tremendous potential for practical applications.

2.
Genomics ; 116(4): 110872, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38849017

ABSTRACT

Cattle-yak is a hybrid offspring resulting from the crossbreeding of yak and cattle, and it exhibits substantial heterosis in production performance. However, male sterility in cattle-yak remains a concern. Reports suggest that noncoding RNAs are involved in the regulation of spermatogenesis. Therefore, in this study, we comprehensively compared testicular transcription profiles among cattle, yak, and cattle-yak. Numerous differentially expressed genes (DEGs), differentially expressed circRNAs (DECs), and differentially expressed miRNAs (DEMs) were identified in the intersection of two comparison groups, namely cattle versus cattle-yak and yak versus cattle-yak, with the number of DEGs, DECs, and DEMs being 4968, 360, and 59, respectively. The DEGs in cattle-yaks, cattle, and yaks were mainly associated with spermatogenesis, male gamete generation, and sexual reproduction. Concurrently, GO and KEGG analyses indicated that DEC host genes and DEM source genes were involved in the regulation of spermatogenesis. The construction of a potential competing endogenous RNA network revealed that some differentially expressed noncoding RNAs may be involved in regulating the expression of genes related to testicular spermatogenesis, including miR-423-5p, miR-449b, miR-34b/c, and miR-15b, as well as previously unreported miR-6123 and miR-1306, along with various miRNA-circRNA interaction pairs. This study serves as a valuable reference for further investigations into the mechanisms underlying male sterility in cattle-yaks.

3.
Chem Soc Rev ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836324

ABSTRACT

Electrochemical energy conversion and storage are playing an increasingly important role in shaping the sustainable future. Differential electrochemical mass spectrometry (DEMS) offers an operando and cost-effective tool to monitor the evolution of gaseous/volatile intermediates and products during these processes. It can deliver potential-, time-, mass- and space-resolved signals which facilitate the understanding of reaction kinetics. In this review, we show the latest developments and applications of DEMS in various energy-related electrochemical reactions from three distinct perspectives. (I) What is DEMS addresses the working principles and key components of DEMS, highlighting the new and distinct instrumental configurations for different applications. (II) How to use DEMS tackles practical matters including the electrochemical test protocols, quantification of both potential and mass signals, and error analysis. (III) Where to apply DEMS is the focus of this review, dealing with concrete examples and unique values of DEMS studies in both energy conversion applications (CO2 reduction, water electrolysis, carbon corrosion, N-related catalysis, electrosynthesis, fuel cells, photo-electrocatalysis and beyond) and energy storage applications (Li-ion batteries and beyond, metal-air batteries, supercapacitors and flow batteries). The recent development of DEMS-hyphenated techniques and the outlook of the DEMS technique are discussed at the end. As DEMS celebrates its 40th anniversary in 2024, we hope this review can offer electrochemistry researchers a comprehensive understanding of the latest developments of DEMS and will inspire them to tackle emerging scientific questions using DEMS.

4.
Angew Chem Int Ed Engl ; : e202400477, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712648

ABSTRACT

Polyethylene oxide (PEO)-based solid-state batteries hold great promise as the next-generation batteries with high energy density and high safety. However, PEO-based electrolytes encounter certain limitations, including inferior ionic conductivity, low Li+ transference number, and poor mechanical strength. Herein, we aim to simultaneously address these issues by utilizing one-dimensional zwitterionic cellulose nanofiber (ZCNF) as fillers for PEO-based electrolytes using a simple aqueous solution casting method. Multiple characterizations and theoretical calculations demonstrate that the unique zwitterionic structure imparts ZCNF with various functions, such as disrupting PEO crystallization, dissociating lithium salts, anchoring anions through cationic groups, accelerating Li+ migration by anionic groups, as well as its inherent reinforcement effect. As a result, the prepared PL-ZCNF electrolyte exhibits remarkable ionic conductivity (5.37 × 10-4 S cm-1) and Li+ transference number (0.62) at 60 °C without sacrificing mechanical strength (9.2 MPa), together with high critical current density of 1.1 mA cm-2. Attributed to these merits of PL-ZCNF, the LiFePO4|PL-ZCNF|Li solid-state full-cell delivers exceptional rate capability and cycling performance (900 cycles at 5 C). Notably, the assembled pouch-cell can maintain steady operation over 1000 cycles with an impressive 93.7% capacity retention at 0.5 C and 60 °C, highlighting the great potential of PL-ZCNF for practical applications.

5.
Digit Health ; 10: 20552076241253531, 2024.
Article in English | MEDLINE | ID: mdl-38766360

ABSTRACT

Background: Previous criteria had limited value in early diagnosis of periprosthetic joint infection (PJI). Here, we constructed a novel machine learning (ML)-derived, "in-time" diagnostic system for PJI and proved its validity. Methods: We filtered "in-time" diagnostic indicators reported in the literature based on our continuous retrospective cohort of PJI and aseptic prosthetic loosening patients. With the indicators, we developed a two-level ML model with six base learners including Elastic Net, Linear Support Vector Machine, Kernel Support Vector Machine, Extra Trees, Light Gradient Boosting Machine and Multilayer Perceptron), and one meta-learner, Ensemble Learning of Weighted Voting. The prediction performance of this model was compared with those of previous diagnostic criteria (International Consensus Meeting in 2018 (ICM 2018), etc.). Another prospective cohort was used for internal validation. Based on our ML model, a user-friendly web tool was developed for swift PJI diagnosis in clinical practice. Results: A total of 254 patients (199 for development and 55 for validation cohort) were included in this study with 38.2% of them diagnosed as PJI. We included 21 widely accessible features including imaging indicators (X-ray and CT) in the model. The sensitivity and accuracy of our ML model were significantly higher than ICM 2018 in development cohort (90.6% vs. 76.1%, P = 0.032; 94.5% vs. 86.7%, P = 0.020), which was supported by internal validation cohort (84.2% vs. 78.6%; 94.6% vs. 81.8%). Conclusions: Our novel ML-derived PJI "in-time" diagnostic system demonstrated significantly improved diagnostic potency for surgical decision-making compared with the commonly used criteria. Moreover, our web-based tool greatly assisted surgeons in distinguishing PJI patients comprehensively. Level of evidence: Diagnostic Level III.

6.
Anal Chim Acta ; 1307: 342648, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38719409

ABSTRACT

In contrast to the conventional fluorescence enhancement resulting from the cessation of the photoinduced electron transfer effect upon capturing nitric oxide (NO) by o-phenylenediamine, we found an interesting fluorescence quench within small molecule fluorophores characterized by intramolecular hydrogen bonding. Herein, the integration of a push-pull electron system with intramolecular hydrogen bonding onto an ultra-small fluorophore was employed to fabricate a hydrogen bond-tuned single benzene core fluorescent probe with an exceptional fluorescence quantum yield of 26 %, denoted as HSC-1. By virtue of its small size and low molecular weight (mere 192 g/mol), it demonstrated superior solubility and biocompatibility. Given the optimized conditions, HSC-1 manifested extraordinary linearity in detecting NO concentrations ranging from 0.5 to 60 µM, with an outstanding detection limit of 23.8 nM. Theoretical calculations unraveled the photophysical properties of hydrogen bonding-related probe molecules and highlighted the NO sensing mechanism. This pioneering work offers an important platform for the design of small fluorescence probes only with a single benzene core applied to NO sensing, which will potentially emerge as a new frontier in the area.

7.
PLoS One ; 19(5): e0301300, 2024.
Article in English | MEDLINE | ID: mdl-38709763

ABSTRACT

OBJECTIVE: The purpose of this study was to investigate whether the combination of abnormal systemic immune-inflammation index (SII) levels and hyperglycemia increased the risk of cognitive function decline and reduced survival rate in the United States. METHODS: This cross-sectional study used data from the National Health and Nutrition Examination Survey (NHANES) database from 2011-2014 and enrolled 1,447 participants aged 60 years or older. Restricted cubic splines (RCS), linear regression and kaplan-meier(KM) curve were employed to explore the combined effects of abnormal SII and hyperglycemia on cognitive function and survival rate, and subgroup analysis was also conducted. RESULTS: The RCS analysis revealed an inverted U-shaped relationship between lgSII levels and cognitive function. Linear regression analysis indicated that neither abnormal SII nor diabetes alone significantly contributed to the decline in cognitive function compared to participants with normal SII levels and blood glucose. However, when abnormal SII coexisted with diabetes (but not prediabetes), it resulted to a significant decline in cognitive function. After adjusting for various confounding factors, these results remained significant in Delayed Word Recall (ß:-0.76, P<0.05) and Digit Symbol Substitution tests (ß:-5.02, P<0.05). Nevertheless, these results showed marginal significance in Total Word Recall test as well as Animal Fluency test. Among all subgroup analyses performed, participants with both abnormal SII levels and diabetes exhibited the greatest decline in cognitive function compared to those with only diabetes. Furthermore, KM curve demonstrated that the combination of abnormal SII levels and diabetes decreased survival rate among participants. CONCLUSION: The findings suggest that the impact of diabetes on cognitive function/survival rate is correlated with SII levels, indicating that their combination enhances predictive power.


Subject(s)
Cognition , Inflammation , Nutrition Surveys , Humans , Female , Male , Aged , Middle Aged , Cross-Sectional Studies , Inflammation/blood , Survival Rate , Diabetes Mellitus/mortality , Diabetes Mellitus/immunology , Diabetes Mellitus/epidemiology , United States/epidemiology , Hyperglycemia/mortality , Blood Glucose/analysis
8.
PLoS One ; 19(5): e0301317, 2024.
Article in English | MEDLINE | ID: mdl-38696407

ABSTRACT

With the predicament of sustainable improvement in traditional cities, the low-carbon city pilot policy (LCCPP), as a novel development mode, provides thinking for resolving the tensions of green development, resource conservation and environmental protection among firms. Using Chinese A-share listed companies panel data during 2007-2019, this study adopts the difference-in-differences model to explore the impact of LCCPP on firm green innovation. Based on theoretical analysis, LCCPP-driven environmental rules have the impact of encouraging business green innovation. The relationship between LCCPP and green innovation is strengthened by external media attention and organizational redundancy resources. The mechanism study shows that the incentive effect of LCCPP on firm green innovation is mainly due to the improvement of enterprises' green total factor productivity and financial stability. In addition, the heterogeneity analysis shows that the LCCPP has significantly positive effects in promoting green innovation in high-carbon industries and state-owned enterprises. This research contributes to the understanding of city-level low-carbon policies as a driving force for corporate green innovation, offering practical implications for policymakers and businesses striving for sustainability.


Subject(s)
Carbon , Cities , Sustainable Development , China , Sustainable Development/economics , Pilot Projects , Conservation of Natural Resources/methods , Conservation of Natural Resources/economics , Humans
9.
World J Gastrointest Surg ; 16(5): 1271-1279, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38817284

ABSTRACT

BACKGROUND: Da Vinci Robotics-assisted total mesorectal excision (TME) surgery for rectal cancer is becoming more widely used. There is no strong evidence that robotic-assisted surgery and laparoscopic surgery have similar outcomes in elderly patients with TME for rectal cancer. AIM: To determine the improved oncological outcomes and short-term efficacy of robot-assisted surgery in elderly patients undergoing TME surgery. METHODS: A retrospective study of the clinical pathology and follow-up of elderly patients who underwent TME surgery at the Department of Gastrointestinal Oncology at the Affiliated Hospital of Nanjing University of Chinese Medicine was conducted from March 2020 through September 2023. The patients were divided into a robot-assisted group (the R-TME group) and a laparoscopic group (the L-TME group), and the short-term efficacy of the two groups was compared. RESULTS: There were 45 elderly patients (≥ 60 years) in the R-TME group and 50 elderly patients (≥ 60 years) in the L-TME group. There were no differences in demographics, conversion rates, or postoperative complication rates. The L-TME group had a longer surgical time than the R-TME group [145 (125, 187.5) vs 180 (148.75, 206.25) min, P = 0.005), and the first postoperative meal time in the L-TME group was longer than that in the R-TME (4 vs 3 d, P = 0.048). Among the sex and body mass index (BMI) subgroups, the R-TME group had better outcomes than did the L-TME group in terms of operation time (P = 0.042) and intraoperative assessment of bleeding (P = 0.042). In the high BMI group, catheter removal occurred earlier in the R-TME group than in the L-TME group (3 vs 4 d, P = 0.001), and autonomous voiding function was restored. CONCLUSION: The curative effect and short-term efficacy of robot-assisted TME surgery for elderly patients with rectal cancer are similar to those of laparoscopic TME surgery; however, robotic-assisted surgery has better short-term outcomes for individuals with risk factors such as obesity and pelvic stenosis. Optimizing the learning curve can shorten the operation time, reduce the recovery time of gastrointestinal function, and improve the prognosis.

10.
Brain Behav ; 14(5): e3522, 2024 May.
Article in English | MEDLINE | ID: mdl-38773776

ABSTRACT

BACKGROUND: Chemokine-like factor 1 (CKLF1) may be involved in the inflammatory response and secondary brain injury after severe traumatic brain injury (sTBI). We determined serum CKLF1 levels of sTBI patients to further investigate the correlation of CKLF1 levels with disease severity, functional prognosis, and 180-day mortality of sTBI. METHODS: Serum CKLF1 levels were measured at admission in 119 sTBI patients and at entry into study in 119 healthy controls. Serum CKLF levels of 50 patients were also quantified at days 1-3, 5, and 7 after admission. Glasgow coma scale (GCS) scores and Rotterdam computerized tomography (CT) classification were utilized to assess disease severity. Extended Glasgow outcome scale (GOSE) scores were recorded to evaluate function prognosis at 180 days after sTBI. Relations of serum CKLF1 levels to 180-day poor prognosis (GOSE scores of 1-4) and 180-day mortality were analyzed using univariate analysis, followed by multivariate analysis. Receiver-operating characteristic (ROC) curve was built to investigate prognostic predictive capability. RESULTS: Serum CKLF1 levels of sTBI patients increased at admission, peaked at day 2, and then gradually decreased; they were significantly higher during the 7 days after sTBI than in healthy controls. Differences of areas under ROC curve (areas under the curve [AUCs]) were not significant among the six time points. Multivariate analysis showed that serum CKLF1 levels were independently correlated with GCS scores, Rotterdam CT classification, and GOSE scores. Serum CKLF1 levels were significantly higher in non-survivors than in survivors and in poor prognosis patients than in good prognosis patients. Serum CKLF1 levels independently predicted 180-day poor prognosis and 180-day mortality, and had high 180-day prognosis and mortality predictive abilities, and their AUCs were similar to those of GCS scores and Rotterdam CT classification. Combination model containing serum CKLF1, GCS scores, and Rotterdam CT classification performed more efficiently than any of them alone in predicting mortality and poor prognosis. The models were visually described using nomograms, which were comparatively stable under calibration curve and were relatively of clinical benefit under decision curve. CONCLUSION: Serum CKLF1 levels are significantly associated with disease severity, poor 180-day prognosis, and 180-day mortality in sTBI patients. Hence, complement CKLF1 may serve as a potential prognostic biomarker of sTBI.


Subject(s)
Biomarkers , Brain Injuries, Traumatic , MARVEL Domain-Containing Proteins , Humans , Male , Female , Prognosis , Biomarkers/blood , Middle Aged , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/mortality , Brain Injuries, Traumatic/diagnosis , Adult , Prospective Studies , MARVEL Domain-Containing Proteins/blood , Severity of Illness Index , Glasgow Coma Scale , Aged , Chemokines/blood , Tomography, X-Ray Computed , Young Adult , Glasgow Outcome Scale , ROC Curve
11.
ESC Heart Fail ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783684

ABSTRACT

AIMS: A recent guideline presented by the ESC Congress in 2022 had indicated a novel therapy targeted at pulmonary artery hypertension, known as pulmonary artery denervation (PADN), which get inspired from a laboratorial trial that could lowering the pulmonary artery pressure through the intervention on the animals. Our aim is to conduct a network meta-analysis to compare the efficacy and safety of PADN from six aspects with the current conventional therapies. METHODS AND RESULTS: According to the PRISMA guidance, databases including Ovid, ClinicalTrials.gov, Medline, Embase, and PubMed were searched from inception to 22 August 2023, along with a full assessment of the previous five meta-analyses. Data were extracted and curated for Bayesian network meta-analysis. The primary outcome was the change in the 6-min walking distance (6MWD) from baseline with a secondary outcome called change in mean pulmonary artery pressure (mPAP) from baseline. The four safety outcomes included risk of clinical worsening, hospitalization, mortality and severe adverse events (SAEs). The comparison is structured on a contrast model based on 65 randomized controlled trials (RCTs) on PADN and the other conventional mainstream drugs. PADN had a better effect in improving 6MWD than Placebo (-77.76 m, 95% CI: -102.04 to -54.34 m), Macitentan (-65.32 m, 95% CI: -95.34 to -36.1 m), Bosentan (-64.5 m, 95% CI: -94.7 to -35.07 m), Iloprost (-62.66 m, 95% CI: -99.48 to -27.13 m), Oxygen (-62.42 m, 95% CI: -100.01 to -25.78 m), Treprostinil (-62.01 m, 95% CI: -89.04 to -35.61 m), Riociguat (-60.59 m, 95% CI: -86.11 to -35.98 m), Selexipag (-47.2 m, 95% CI: -85.61 to -10.19 m), Sildenafil (-44.92 m, 95% CI: -74.43 to -16.15 m), or Sitaxsentan (-39.53 m, 95% CI: -78.99 to -0.76 m). PADN had a better antihypertensive effect than placebo and showed statistical significant lower risks to induce clinical worsening and re-hospitalization than treprostinil, riociguat, and placebo groups. No statistically significant difference in risk of mortality and severe adverse events was observed between PADN versus the other interventions. CONCLUSIONS: Compared with 16 types of conventional therapies and Placebo, PADN has advantage over nine single therapies and Placebo in improving 6MWD and appears to be better than two types of dual-drug combined therapies while with no statistical significance. PADN shows a favourable antihypertensive effect on mPAP and has a lower risk to trigger clinical worsening or hospitalization, while its risk on mortality and severe adverse events is still inconclusive.

12.
Sci Rep ; 14(1): 10430, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714826

ABSTRACT

Absent in melanoma 2 (AIM2) is implicated in neuroinflammation. Here, we explored the prognostic significance of serum AIM2 in human aneurysmal subarachnoid hemorrhage (aSAH). We conducted a consecutive enrollment of 127 patients, 56 of whom agreed with blood-drawings not only at admission but also at days 1, 2, 3, 5, 7 and 10 days after aSAH. Serum AIM2 levels of patients and 56 healthy controls were measured. Disease severity was assessed using the modified Fisher scale (mFisher) and World Federation of Neurological Surgeons Scale (WFNS). Neurological outcome at poststroke 90 days was evaluated via the modified Rankin Scale (mRS). Univariate analysis and multivariate analysis were sequentially done to ascertain relationship between serum AIM2 levels, severity, delayed cerebral ischemia (DCI) and 90-day poor prognosis (mRS scores of 3-6). Patients, in comparison to controls, had a significant elevation of serum AIM2 levels at admission and at days 1, 2, 3, 5, 7 and 10 days after aSAH, with the highest levels at days 1, 2, 3 and 5. AIM2 levels were independently correlated with WFNS scores and mFisher scores. Significantly higher serum AIM2 levels were detected in patients with a poor prognosis than in those with a good prognosis, as well as in patients with DCI than in those without DCI. Moreover, serum AIM2 levels independently predicted a poor prognosis and DCI, and were linearly correlated with their risks. Using subgroup analysis, there were no significant interactions between serum AIM2 levels and age, gender, hypertension and so on. There were substantially high predictive abilities of serum AIM2 for poor prognosis and DCI under the receiver operating characteristic curve. The combination models of DCI and poor prognosis, in which serum AIM2, WFNS scores and mFisher scores were incorporated, showed higher discriminatory efficiencies than anyone of the preceding three variables. Moreover, the models are delineated using the nomogram, and performed well under the calibration curve and decision curve. Serum AIM2 levels, with a substantial enhancement during early phase after aSAH, are closely related to bleeding severity, poor 90-day prognosis and DCI of patients, substantializing serum AIM2 as a potential prognostic biomarker of aSAH.


Subject(s)
DNA-Binding Proteins , Subarachnoid Hemorrhage , Humans , Male , Female , Middle Aged , Subarachnoid Hemorrhage/blood , Subarachnoid Hemorrhage/diagnosis , Subarachnoid Hemorrhage/mortality , Prognosis , Prospective Studies , DNA-Binding Proteins/blood , Aged , Adult , Biomarkers/blood , Case-Control Studies , Longitudinal Studies , Severity of Illness Index , Brain Ischemia/blood
13.
Front Pharmacol ; 15: 1391511, 2024.
Article in English | MEDLINE | ID: mdl-38799163

ABSTRACT

Introduction: Myocardial infarction (MI), the most prevalent ischemic heart disease, constitutes a primary cause of global cardiovascular disease with incidence and mortality. The pathogenesis of MI is exceedingly intricate, with PANoptosis playing a pivotal role in its pathological process. Xian Ling Gu Bao capsule (XLGB) contains various active components, including flavonoids, terpenes, and phenylpropanoids, and exhibits a wide range of pharmacological activities. However, it remains unclear whether XLGB can protect the myocardium from damage after MI. This study aimed to investigate the impact of XLGB on isoprenaline (ISO)-induced MI in mice and its potential mechanisms. Methods: This study assessed the protective effects of XLGB against ISO-induced MI through techniques such as echocardiography, HE staining, Masson staining, and enzyme-linked immunosorbent assay (ELISA). Furthermore, the potential mechanisms of XLGB's protective effects on MI were explored using bioinformatics, molecular docking, and molecular dynamics simulations. These mechanisms were further validated through immunofluorescence staining and Western blotting. Results: The results demonstrated that various doses of XLGB exhibited a significant reduction in myocardial injury induced by myocardial infarction. Intriguingly, higher dosages of XLGB displayed superior therapeutic efficacy compared to the positive control metoprolol. This protective effect is primarily achieved through the inhibition of oxidative stress and the inflammatory processes. Furthermore, we have elucidated that XLGB protected the myocardium from MI-induced damage by suppressing PANoptosis, with a critical role played by the NLRP3/Caspase3/RIP1 signaling pathway. Of particular note, the primary compounds of XLGB were found to directly interact with NLRP3/Caspase3/RIP1, a discovery further validated through molecular docking and molecular dynamics simulations. This suggests that NLRP3/Caspase3/RIP1 may be a therapeutic target for XLGB-induced myocardial protection. Conclusion: In summary, our findings reveal a novel property of XLGB: reverses myocardial damage following MI by inhibiting the NLRP3/Caspase3/RIP1-mediated PANoptosis pathway.

14.
Front Immunol ; 15: 1307748, 2024.
Article in English | MEDLINE | ID: mdl-38601143

ABSTRACT

Background: Monocyte/macrophage (Mo/Mp) is a critical cell population involved in immune modulation of rheumatoid synovitis (RA) across different pathotypes. This study aims to investigate the contribution of Mo/Mp clusters to RA activity, and the biological function of particular subtypes in RA remission. Methods: We integrated single-cell RNA sequencing datasets from 4 published and 1 in-house studies using Liger selected by comparison. We estimated the abundance of Mo/Mp subtypes in bulk RNA-seq data from the 81 patients of the Pathobiology of Early Arthritis Cohort (PEAC) using deconvolution analysis. Correlations between Mo/Mp subtypes and RA clinical metrics were assessed. A particular cell type was identified using multicolor immunofluorescence and flow cytometry in vivo and successfully induced from a cell line in vitro. Potential immune modulation function of it was performed using immunohistochemical staining, adhesion assay, and RT-qPCR. Results: We identified 8 Mo/Mp clusters. As a particular subtype among them, COL3A1+ Mp (CD68+, COL3A1+, ACTA2-) enriched in myeloid pathotype and negatively correlated with RA severity metrics in all pathotypes. Flow cytometry and multicolor immunofluorescence evidenced the enrichment and M2-like phenotype of COL3A1+ Mp in the myeloid pathotype. Further assays suggested that COL3A1+ Mp potentially attenuates RA severity via expressing anti-inflammatory cytokines, enhancing Mp adhesion, and forming a physical barrier at the synovial lining. Conclusion: This study reported unexplored associations between different pathologies and myeloid cell subtypes. We also identified a fibroblast-and-M2-like cluster named COL3A1+ Mp, which potentially contributes to synovial immune homeostasis. Targeting the development of COL3A1+ Mp may hold promise for inducing RA remission.


Subject(s)
Arthritis, Rheumatoid , Synoviocytes , Synovitis , Humans , Synovitis/metabolism , Macrophages , Synoviocytes/metabolism , Phenotype , Collagen Type III
15.
Materials (Basel) ; 17(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38591513

ABSTRACT

In this work, to explore potential substitutions for the Co binder phase, ultrafine-grain WC-based cermets with various binder phases of Co, Ni and AlCoCrNiFeCu HEA were prepared using the SPS method. Based on SPS, WC-based cermets were fabricated at higher speed, showing fine carbide particles less than 410 µm. The microstructure, mechanical properties and wear properties were systematically evaluated. By comparison, the grain size of WC was the lowest for WC-10Co, while WC-10 HEA cermet held the coarsest WC particles. The hardness and fracture toughness of WC-10 HEA were the best among all three samples, with values of 93.2 HRA and 11.3 MP·m1/2. However, the bending strength of WC-10HEA was about 56.1% lower than that of WC-10Co, with a value of 1349.6 MPa. The reduction in bending strength is attributed to the lower density, formation of a newly Cr-Al rich phase and coarser WC grains. In dry sliding wear conditions, WC-10 HEA showed the lowest wear rate (0.98 × 10-6 mm3/(N·m)) and coefficient of friction (0.19), indicating the best wear resistance performance. This reveals that WC-based cermet with a HEA binder phase has superior wear performance due to the higher hardness and good self-lubricating effect of the wear products.

16.
Plants (Basel) ; 13(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674527

ABSTRACT

CCT MOTIF FAMILY (CMF) genes belong to the CCT gene family and have been shown to play a role in diverse processes, such as flowering time and yield regulation, as well as responses to abiotic stresses. CMF genes have not yet been identified in Brassica rapa. A total of 25 BrCMF genes were identified in this study, and these genes were distributed across eight chromosomes. Collinearity analysis revealed that B. rapa and Arabidopsis thaliana share many homologous genes, suggesting that these genes have similar functions. According to sequencing analysis of promoters, several elements are involved in regulating the expression of genes that mediate responses to abiotic stresses. Analysis of the tissue-specific expression of BrCMF14 revealed that it is highly expressed in several organs. The expression of BrCMF22 was significantly downregulated under salt stress, while the expression of BrCMF5, BrCMF7, and BrCMF21 was also significantly reduced under cold stress. The expression of BrCMF14 and BrCMF5 was significantly increased under drought stress, and the expression of BrCMF7 was upregulated. Furthermore, protein-protein interaction network analysis revealed that A. thaliana homologs of BrCMF interacted with genes involved in the abiotic stress response. In conclusion, BrCMF5, BrCMF7, BrCMF14, BrCMF21, and BrCMF22 appear to play a role in responses to abiotic stresses. The results of this study will aid future investigations of CCT genes in B. rapa.

17.
Cell Death Dis ; 15(4): 263, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615011

ABSTRACT

Abnormal cardiac fibrosis is the main pathological change of post-myocardial infarction (MI) heart failure. Although the E3 ubiquitin ligase FBXL8 is a key regulator in the cell cycle, cell proliferation, and inflammation, its role in post-MI ventricular fibrosis and heart failure remains unknown. FBXL8 was primarily expressed in cardiac fibroblasts (CFs) and remarkably decreased in CFs treated by TGFß and heart subjected to MI. The echocardiography and histology data suggested that adeno-associated viruses (AAV9)-mediated FBXL8 overexpression had improved cardiac function and ameliorated post-MI cardiac fibrosis. In vitro, FBXL8 overexpression prevented TGFß-induced proliferation, migration, contraction, and collagen secretion in CFs, while knockdown of FBXL8 demonstrated opposite effects. Mechanistically, FBXL8 interacted with Snail1 to promote Snail1 degradation through the ubiquitin-proteasome system and decreased the activation of RhoA. Moreover, the FBXL8ΔC3 binding domain was indispensable for Snail1 interaction and degradation. Ectopic Snail1 expression partly abolished the effects mediated by FBXL8 overexpression in CFs treated by TGFß. These results characterized the role of FBXL8 in regulating the ubiquitin-mediated degradation of Snail1 and revealed the underlying molecular mechanism of how MI up-regulated the myofibroblasts differentiation-inducer Snail1 and suggested that FBXL8 may be a potential curative target for improving post-MI cardiac function.


Subject(s)
Heart Failure , Myocardial Infarction , Humans , Proteasome Endopeptidase Complex , Myocardial Infarction/genetics , Transforming Growth Factor beta , Ubiquitins
18.
J Cancer ; 15(7): 1890-1897, 2024.
Article in English | MEDLINE | ID: mdl-38434967

ABSTRACT

Background: Regulating the immune system is a crucial measure of gut microbiota (GM) that influences the development of diseases. The causal role of GM on Non-small cell lung cancer (NSCLC) and whether it can be mediated by immune cells is still unknown. Methods: We performed a two-step, two-sample Mendelian randomization study with an Inverse variance weighted (IVW) approach to investigate the causal role of GM on NSCLC and the mediation effect of immune cells between the association of GM and NSCLC. Results: MR analyses determined the protective effects of 6 genera on NSCLC (Bacteroides, Roseburia, Alistipes, Methanobrevibacter, Ruminococcus gauvreauii group, and Peptococcus). In addition, 38 immune cell traits were suggestively associated with NSCLC. Of note, the mediation MR illustrated the causal role of Genus-Peptococcus on NSCLC (Total effect IVW: OR = 0.790, 95% CI [0.657, 0.950], P = 0.012) was to a large proportion mediated by CD45 on HLA DR+ CD4+ in TBNK panel (-034 (95% CI [-0.070, -0.005]; P = 0.037), accounting for 14.4% of Total effect). Conclusion: The study suggested a causal relationship between GM and NSCLC, which may be mediated by immune cells.

19.
World J Mens Health ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38449458

ABSTRACT

Recent studies on male infertility reveal a growing worry: more infertile men are dealing with inflammation in the testis. Analyzing testicular biopsies from infertile men highlights a significant presence of inflammation. This connection, supported by clinical and pathological evidence, emphasizes that testicular inflammation hampers sperm production, leading to lasting declines in sperm count and quality. However, the exact reasons behind male infertility due to orchitis, a type of testicular inflammation, are still uncertain. Understanding these fundamental aspects of molecular signals and cellular mechanisms in testicular inflammation is crucial. Our review delves into recent literature with a dual objective: elucidating potential mechanisms involving immune cells, non-immune cells, and cytokines that link orchitis to male infertility, while also paving the way for precise interventions and solutions to address the challenges of male infertility.

20.
Synth Syst Biotechnol ; 9(2): 312-321, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38545458

ABSTRACT

Acinetobacter baumannii is a pathogenic bacterium widespread in human environments, especially in intensive care units, and is associated with high morbidity and infection rates. Multiple drug resistance in A. baumannii frequently leads to the death of patients, making the development of multi-effect antibacterial agents against this bacterium a research hotspot. We have previously found that the X33 antimicrobial oligopeptide can effectively inhibit the growth of Penicillium digitatum and Candida albicans. Herein, we evaluated the antibacterial activity of X33 antimicrobial oligopeptide against A. baumannii by determining the minimum inhibitory concentration, inhibition zone, and growth curve. The increase in extracellular alkaline phosphatase and the leakage of intracellular compounds confirmed the effect of X33 antimicrobial oligopeptide on the cell wall and membrane. Changes in reactive oxygen species, malondialdehyde, ATP, reducing sugar, soluble protein, and pyruvate content demonstrated that the incubation with X33 antimicrobial oligopeptide affected energy metabolism and oxidative stress. Consistent with the physiological characteristics, transcriptomics analysis indicated that incubation with X33 antimicrobial oligopeptide significantly induced changes in the expression of 2339 genes, including 1262 upregulated and 1077 downregulated genes, which participate in oxidative phosphorylation, ribosome, quorum sensing, fatty acid degradation, glycolysis/gluconeogenesis, and citrate cycle pathways. These results provide a fundamental basis for investigating the mechanism of X33 antimicrobial oligopeptide as a potential drug against A. baumannii.

SELECTION OF CITATIONS
SEARCH DETAIL
...