Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 119(12): e2119588119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35290114

ABSTRACT

SignificanceAlthough most studies of the genetic regulation of genome stability involve an analysis of mutations within the coding sequences of genes required for DNA replication or DNA repair, recent studies in yeast show that reduced levels of wild-type enzymes can also produce a mutator phenotype. By whole-genome sequencing and other methods, we find that reduced levels of the wild-type DNA polymerase ε in yeast greatly increase the rates of mitotic recombination, aneuploidy, and single-base mutations. The observed pattern of genome instability is different from those observed in yeast strains with reduced levels of the other replicative DNA polymerases, Pol α and Pol δ. These observations are relevant to our understanding of cancer and other diseases associated with genetic instability.


Subject(s)
DNA Polymerase II , Saccharomyces cerevisiae , DNA Polymerase II/metabolism , DNA Replication/genetics , Genomic Instability/genetics , Humans , Mutation , Saccharomyces cerevisiae/metabolism
2.
Proc Natl Acad Sci U S A ; 117(45): 28191-28200, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33106417

ABSTRACT

Genomic alterations including single-base mutations, deletions and duplications, translocations, mitotic recombination events, and chromosome aneuploidy generate genetic diversity. We examined the rates of all of these genetic changes in a diploid strain of Saccharomyces cerevisiae by whole-genome sequencing of many independent isolates (n = 93) subcloned about 100 times in unstressed growth conditions. The most common alterations were point mutations and small (<100 bp) insertion/deletions (n = 1,337) and mitotic recombination events (n = 1,215). The diploid cells of most eukaryotes are heterozygous for many single-nucleotide polymorphisms (SNPs). During mitotic cell divisions, recombination can produce derivatives of these cells that have become homozygous for the polymorphisms, termed loss-of-heterozygosity (LOH) events. LOH events can change the phenotype of the cells and contribute to tumor formation in humans. We observed two types of LOH events: interstitial events (conversions) resulting in a short LOH tract (usually less than 15 kb) and terminal events (mostly cross-overs) in which the LOH tract extends to the end of the chromosome. These two types of LOH events had different distributions, suggesting that they may have initiated by different mechanisms. Based on our results, we present a method of calculating the probability of an LOH event for individual SNPs located throughout the genome. We also identified several hotspots for chromosomal rearrangements (large deletions and duplications). Our results provide insights into the relative importance of different types of genetic alterations produced during vegetative growth.


Subject(s)
Chromosomes, Fungal/genetics , Mutation/genetics , Saccharomyces cerevisiae/genetics , Chromosome Mapping , Diploidy , Gene Conversion/genetics , Gene Rearrangement/genetics , Loss of Heterozygosity/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Saccharomyces cerevisiae/cytology
3.
Appl Environ Microbiol ; 85(18)2019 09 15.
Article in English | MEDLINE | ID: mdl-31300396

ABSTRACT

Furfural is an important renewable precursor for multiple commercial chemicals and fuels; a main inhibitor existing in cellulosic hydrolysate, which is used for bioethanol fermentation; and a potential carcinogen, as well. Using a genetic system in Saccharomyces cerevisiae that allows detection of crossover events, we observed that the frequency of mitotic recombination was elevated by 1.5- to 40-fold when cells were treated with 0.1 g/liter to 20 g/liter furfural. Analysis of the gene conversion tracts associated with crossover events suggested that most furfural-induced recombination resulted from repair of DNA double-strand breaks (DSBs) that occurred in the G1 phase. Furfural was incapable of breaking DNA directly in vitro but could trigger DSBs in vivo related to reactive oxygen species accumulation. By whole-genome single nucleotide polymorphism (SNP) microarray and sequencing, furfural-induced genomic alterations that range from single base substitutions, loss of heterozygosity, and chromosomal rearrangements to aneuploidy were explored. At the whole-genome level, furfural-induced events were evenly distributed across 16 chromosomes but were enriched in high-GC-content regions. Point mutations, particularly the C-to-T/G-to-A transitions, were significantly elevated in furfural-treated cells compared to wild-type cells. This study provided multiple novel insights into the global effects of furfural on genomic stability.IMPORTANCE Whether and how furfural affects genome integrity have not been clarified. Using a Saccharomyces cerevisiae model, we found that furfural exposure leads to in vivo DSBs and elevation in mitotic recombination by orders of magnitude. Gross chromosomal rearrangements and aneuploidy events also occurred at a higher frequency in furfural-treated cells. In a genome-wide analysis, we show that the patterns of mitotic recombination and point mutations differed dramatically in furfural-treated cells and wild-type cells.


Subject(s)
Carcinogens , Cell Division/drug effects , Furaldehyde/adverse effects , Genome, Fungal/drug effects , Genomic Instability/drug effects , Saccharomyces cerevisiae/drug effects , Chromosomes, Fungal/drug effects , Chromosomes, Fungal/genetics , DNA Breaks, Double-Stranded/drug effects , Genome, Fungal/genetics , Saccharomyces cerevisiae/genetics
4.
Curr Genet ; 65(4): 913-917, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30963245

ABSTRACT

Oxidative stress has been implicated in a variety of human diseases. One plausible mechanism is that reactive active species can induce DNA damages and jeopardize genome integrity. To explore how oxidative stress results in global genomic instability in cells, our current study examined the genomic alterations caused by H2O2 exposure at the whole genome level in yeast. Using SNP microarrays and genome sequencing, we mapped H2O2-induced genomic alterations in the yeast genome ranging from point mutations and mitotic recombination to chromosomal aneuploidy. Our results suggested most H2O2-induced mitotic recombination events were the result of DNA double-stand breaks generated by hydroxyl radicals. Moreover, the mutagenic effect of H2O2 was shown to be largely dependent on DNA polymerase ζ. Lastly, we showed that H2O2 exposure allows rapid phenotypic evolution in yeast strains. Our findings indicate DNA lesions resulting from H2O2 may be general factors that drive genome instability and phenotypic evolution in organisms.


Subject(s)
DNA Damage/drug effects , Genomic Instability/genetics , Hydrogen Peroxide/pharmacology , Oxidative Stress/genetics , Aneuploidy , DNA Replication/drug effects , DNA Replication/genetics , Genomic Instability/drug effects , Humans , Mitosis/drug effects , Mitosis/genetics , Mutagenesis/genetics , Oligonucleotide Array Sequence Analysis , Oxidative Stress/drug effects , Polymorphism, Single Nucleotide/genetics , Saccharomyces cerevisiae/genetics , Whole Genome Sequencing
5.
Appl Microbiol Biotechnol ; 102(5): 2213-2223, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29333587

ABSTRACT

Yeast Saccharomyces cerevisiae strains isolated from different sources generally show extensive genetic and phenotypic diversity. Understanding how genomic variations influence phenotypes is important for developing strategies with improved economic traits. The diploid S. cerevisiae strain NY1308 is used for cellulosic bioethanol production. Whole genome sequencing identified an extensive amount of single nucleotide variations and small insertions/deletions in the genome of NY1308 compared with the S288c genome. Gene annotation of the assembled NY1308 genome showed that 43 unique genes are absent in the S288c genome. Phylogenetic analysis suggested most of the unique genes were obtained through horizontal gene transfer from other species. RNA-Seq revealed that some unique genes were not functional in NY1308 due to unidentified intron sequences. During bioethanol fermentation, NY1308 tends to flocculate when certain inhibitors (derived from the pretreatment of cellulosic feedstock) are present in the fermentation medium. qRT-PCR and genetic manipulation confirmed that the novel gene, NYn43, contributed to the flocculation ability of NY1308. Deletion of NYn43 resulted in a faster fermentation rate for NY1308. This work disclosed the genetic characterization of a bioethanol-producing S. cerevisiae strain and provided a useful paradigm showing how the genetic diversity of the yeast population would facilitate the personalized development of desirable traits.


Subject(s)
Ethanol/metabolism , Saccharomyces cerevisiae/genetics , Diploidy , Fermentation , Genome, Fungal , Molecular Sequence Annotation , Phenotype , Phylogeny , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/isolation & purification , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
6.
mBio ; 8(6)2017 12 19.
Article in English | MEDLINE | ID: mdl-29259092

ABSTRACT

Although meiosis in warm-blooded organisms takes place in a narrow temperature range, meiosis in many organisms occurs over a wide variety of temperatures. We analyzed the properties of meiosis in the yeast Saccharomyces cerevisiae in cells sporulated at 14°C, 30°C, or 37°C. Using comparative-genomic-hybridization microarrays, we examined the distribution of Spo11-generated meiosis-specific double-stranded DNA breaks throughout the genome. Although there were between 300 and 400 regions of the genome with high levels of recombination (hot spots) observed at each temperature, only about 20% of these hot spots were found to have occurred independently of the temperature. In S. cerevisiae, regions near the telomeres and centromeres tend to have low levels of meiotic recombination. This tendency was observed in cells sporulated at 14°C and 30°C, but not at 37°C. Thus, the temperature of sporulation in yeast affects some global property of chromosome structure relevant to meiotic recombination. Using single-nucleotide polymorphism (SNP)-specific whole-genome microarrays, we also examined crossovers and their associated gene conversion events as well as gene conversion events that were unassociated with crossovers in all four spores of tetrads obtained by sporulation of diploids at 14°C, 30°C, or 37°C. Although tetrads from cells sporulated at 30°C had slightly (20%) more crossovers than those derived from cells sporulated at the other two temperatures, spore viability was good at all three temperatures. Thus, despite temperature-induced variation in the genetic maps, yeast cells produce viable haploid products at a wide variety of sporulation temperatures.IMPORTANCE In the yeast Saccharomyces cerevisiae, recombination is usually studied in cells that undergo meiosis at 25°C or 30°C. In a genome-wide analysis, we showed that the locations of genomic regions with high and low levels of meiotic recombination (hot spots and cold spots, respectively) differed dramatically in cells sporulated at 14°C, 30°C, and 37°C. Thus, in yeast, and likely in other non-warm-blooded organisms, genetic maps are strongly affected by the environment.


Subject(s)
Meiosis/radiation effects , Recombination, Genetic/radiation effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/radiation effects , Temperature , Comparative Genomic Hybridization , DNA Breaks, Double-Stranded , Microarray Analysis , Microbial Viability/radiation effects , Saccharomyces cerevisiae/growth & development , Spores, Fungal/genetics , Spores, Fungal/growth & development , Spores, Fungal/radiation effects
7.
Appl Microbiol Biotechnol ; 101(13): 5405-5414, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28429058

ABSTRACT

Polyploidy is common in Saccharomyces cerevisiae strains, but the physiological and phenotypic effects of ploidy changes have not been fully clarified. Here, isogenic diploid, triploid, and tetraploid S. cerevisiae strains were constructed from a haploid strain, CEN.PK2-1C. Stress tolerance and ethanol fermentation performance of the four euploid strains were compared. Each euploid strain had strengths and weaknesses in tolerance to certain stressors, and no single strain was tolerant of all stressors. The diploid had higher ethanol production than the other strains in normal fermentation medium, while the triploid strain showed the fastest fermentation rate in the presence of inhibitors found in lignocellulosic hydrolysate. Physiological determination revealed diverse physiological attributes, such as trehalose, ergosterol, glutathione, and anti-oxidative enzymes among the strains. Our analyses suggest that both ploidy parity and number of chromosome sets contribute to changes in physiological status. Using qRT-PCR, different expression patterns of genes involved in the regulation of cell morphology and the biosynthesis of key physiological attributes among strains were determined. Our data provide novel insights into the multiple effects of genome duplication on yeast cells and are a useful reference for breeding excellent strains used in specific industrial applications.


Subject(s)
Gene Duplication , Genome, Fungal , Industrial Microbiology , Saccharomyces cerevisiae/genetics , Ergosterol/metabolism , Ethanol/metabolism , Fermentation , Gene Expression , Phenotype , Polyploidy , Real-Time Polymerase Chain Reaction , Saccharomyces cerevisiae Proteins/genetics , Stress, Physiological/genetics , Trehalose/metabolism
8.
Bioresour Technol ; 231: 53-58, 2017 May.
Article in English | MEDLINE | ID: mdl-28192726

ABSTRACT

The aim of this work was to develop a novel strategy for improving the vanillin tolerance and ethanol fermentation performances of Saccharomyces cerevisiae strains. Isogeneic diploid, triploid, and tetraploid S. cerevisiae strains were generated by genome duplication of haploid strain CEN.PK2-1C. Ploidy increments improved vanillin tolerance and diminished proliferation capability. Antimitotic drug methyl benzimidazol-2-ylcarbamate (MBC) was used to introduce chromosomal aberrations into the tetraploid S. cerevisiae strain. Interestingly, aneuploid mutants with DNA contents between triploid and tetraploid were more resistant to vanillin and showed faster ethanol fermentation rates than all euploid strains. The physiological characteristics of these mutants suggest that higher bioconversion capacities of vanillin and ergosterol contents might contribute to improved vanillin tolerance. This study demonstrates that genome duplication and MBC treatment is a powerful strategy to improve the vanillin tolerance of yeast strains.


Subject(s)
Benzaldehydes/toxicity , Ethanol/metabolism , Fermentation/drug effects , Saccharomyces cerevisiae/metabolism , Aneuploidy , Biomass , Ergosterol/metabolism , Genome, Fungal , Mutation/genetics , Phenotype , Ploidies , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development
9.
Proc Natl Acad Sci U S A ; 113(50): E8114-E8121, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27911848

ABSTRACT

DNA replication stress (DRS)-induced genomic instability is an important factor driving cancer development. To understand the mechanisms of DRS-associated genomic instability, we measured the rates of genomic alterations throughout the genome in a yeast strain with lowered expression of the replicative DNA polymerase δ. By a genetic test, we showed that most recombinogenic DNA lesions were introduced during S or G2 phase, presumably as a consequence of broken replication forks. We observed a high rate of chromosome loss, likely reflecting a reduced capacity of the low-polymerase strains to repair double-stranded DNA breaks (DSBs). We also observed a high frequency of deletion events within tandemly repeated genes such as the ribosomal RNA genes. By whole-genome sequencing, we found that low levels of DNA polymerase δ elevated mutation rates, both single-base mutations and small insertions/deletions. Finally, we showed that cells with low levels of DNA polymerase δ tended to accumulate small promoter mutations that increased the expression of this polymerase. These deletions conferred a selective growth advantage to cells, demonstrating that DRS can be one factor driving phenotypic evolution.


Subject(s)
DNA Replication/genetics , DNA, Fungal/genetics , DNA, Fungal/metabolism , Genomic Instability , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Aneuploidy , Chromosomes, Fungal/genetics , DNA Copy Number Variations , DNA Polymerase III/metabolism , Humans , INDEL Mutation , Loss of Heterozygosity , Neoplasms/genetics , Oligonucleotide Array Sequence Analysis , Point Mutation , Polymorphism, Single Nucleotide , Saccharomyces cerevisiae Proteins/metabolism , Sequence Analysis, DNA , Stress, Physiological , Tandem Repeat Sequences
10.
Protein Expr Purif ; 126: 115-121, 2016 10.
Article in English | MEDLINE | ID: mdl-27335160

ABSTRACT

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent. The aim of this study is to produce large quantities of highly pure and bioactive recombinant human TRAIL. Here, TRAIL was expressed in soluble form by pH-stat fed-batch cultivation and purified using a rapid and simple two-step chromatographic procedure. To improve the soluble yield, expression of TRAIL in Escherichia coli was induced with low IPTG concentration (0.1 mM) at low temperature (28 °C) supplemented with ZnSO4 (0.5 mM), using glycerol as carbon source. Under the optimized conditions, 4.14 ± 0.19 g/L of TRAIL in soluble form was achieved at 19 h without pure oxygen. To purify the recombinant TRAIL, we developed an efficient two-step chromatographic procedure including affinity chromatography and cation-exchange chromatography, especially improved the cation-exchange chromatography using a combination of pH and NaCl gradients strategy. Consequently, 4313.5 mg of target protein with high purity (98.1%) was obtained from 2.3 L of cell broth. Our results also showed that the purified TRAIL was with ordered secondary and tertiary structures, in homogeneous form and with strong cytotoxicity.


Subject(s)
TNF-Related Apoptosis-Inducing Ligand , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , TNF-Related Apoptosis-Inducing Ligand/biosynthesis , TNF-Related Apoptosis-Inducing Ligand/chemistry , TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/isolation & purification
11.
Biotechnol Lett ; 38(7): 1097-106, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27067354

ABSTRACT

OBJECTIVES: To improve tolerance to acetic acid that is present in lignocellulosic hydrolysates and affects bioethanol production by Saccharomyces cerevisiae. RESULTS: Saccharomyces cerevisiae strains with improved tolerance to acetic acid were obtained through deletion of the JJJ1 gene. The lag phase of the JJJ1 deletion mutant BYΔJJJ1 was ~16 h shorter than that of the parent strain, BY4741, when the fermentation medium contained 4.5 g acetic acid/l. Additionally, the specific ethanol production rate of BYΔJJJ1 was increased (0.057 g/g h) compared to that of the parent strain (0.051 g/g h). Comparative transcription and physiological analyses revealed higher long chain fatty acid, trehalose, and catalase contents might be critical factors responsible for the acetic acid resistance of JJJ1 knockout strains. CONCLUSIONS: JJJ1 deletion improves acetic acid tolerance and ethanol fermentation performance of S. cerevisiae.


Subject(s)
Acetic Acid/pharmacology , Ethanol/metabolism , Saccharomyces cerevisiae/metabolism , Fermentation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
12.
FEMS Yeast Res ; 16(2): fov118, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26733503

ABSTRACT

Genomic structural variation (GSV) is a ubiquitous phenomenon observed in the genomes of Saccharomyces cerevisiae strains with different genetic backgrounds; however, the physiological and phenotypic effects of GSV are not well understood. Here, we first revealed the genetic characteristics of a widely used industrial S. cerevisiae strain, ZTW1, by whole genome sequencing. ZTW1 was identified as an aneuploidy strain and a large-scale GSV was observed in the ZTW1 genome compared with the genome of a diploid strain YJS329. These GSV events led to copy number variations (CNVs) in many chromosomal segments as well as one whole chromosome in the ZTW1 genome. Changes in the DNA dosage of certain functional genes directly affected their expression levels and the resultant ZTW1 phenotypes. Moreover, CNVs of large chromosomal regions triggered an aneuploidy stress in ZTW1. This stress decreased the proliferation ability and tolerance of ZTW1 to various stresses, while aneuploidy response stress may also provide some benefits to the fermentation performance of the yeast, including increased fermentation rates and decreased byproduct generation. This work reveals genomic characters of the bioethanol S. cerevisiae strain ZTW1 and suggests that GSV is an important kind of mutation that changes the traits of industrial S. cerevisiae strains.


Subject(s)
Ethanol/metabolism , Genomic Structural Variation , Metabolic Networks and Pathways/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Gene Dosage , Phenotype , Ploidies , Sequence Analysis, DNA
13.
Appl Microbiol Biotechnol ; 99(7): 3127-39, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25573472

ABSTRACT

Xylose is described as a component of bacterial exopolysaccharides in only a limited number of bacterial strains. A bacterial strain, Paenibacillus elgii, B69 was shown to be efficient in producing a xylose-containing exopolysaccharide. Sequence analysis was performed to identify the genes encoding the uridine diphosphate (UDP)-glucuronic acid decarboxylase required for the synthesis of UDP-xylose, the precursor of the exopolysaccharide. Two sequences, designated as Peuxs1 and Peuxs2, were found as the candidate genes for such enzymes. The activities of the UDP-glucuronic acid decarboxylases were proven by heterologous expression and real-time nuclear magnetic resonance analysis. The intracellular activity and effect of these genes on the synthesis of exopolysaccharide were further investigated by developing a thymidylate synthase based knockout system. This system was used to substitute the conventional antibiotic resistance gene system in P. elgii, a natural multi-antibiotic resistant strain. Results of intracellular nucleotide sugar analysis showed that the intracellular UDP-xylose and UDP-glucuronic acid levels were affected in Peuxs1 or Peuxs2 knockout strains. The knockout of either Peuxs1 or Peuxs2 reduced the polysaccharide production and changed the monosaccharide ratio. No polysaccharide was found in the Peuxs1/Peuxs2 double knockout strain. Our results show that P. elgii can be efficient in forming UDP-xylose, which is then used for the synthesis of xylose-containing exopolysaccharide.


Subject(s)
Carboxy-Lyases/metabolism , Paenibacillus/metabolism , Polysaccharides/biosynthesis , Amino Acid Sequence , Chromatography, High Pressure Liquid , Cloning, Molecular , Drug Resistance, Bacterial/genetics , Gene Knockout Techniques , Kinetics , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Mutation , Polysaccharides/chemistry , Polysaccharides/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Uridine Diphosphate Xylose/metabolism , Xylose/chemistry , Xylose/metabolism
14.
J Ind Microbiol Biotechnol ; 42(2): 207-18, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25475753

ABSTRACT

Baker's yeast (Saccharomyces cerevisiae) is the common yeast used in the fields of bread making, brewing, and bioethanol production. Growth rate, stress tolerance, ethanol titer, and byproducts yields are some of the most important agronomic traits of S. cerevisiae for industrial applications. Here, we developed a novel method of constructing S. cerevisiae strains for co-producing bioethanol and ergosterol. The genome of an industrial S. cerevisiae strain, ZTW1, was first reconstructed through treatment with an antimitotic drug followed by sporulation and hybridization. A total of 140 mutants were selected for ethanol fermentation testing, and a significant positive correlation between ergosterol content and ethanol production was observed. The highest performing mutant, ZG27, produced 7.9 % more ethanol and 43.2 % more ergosterol than ZTW1 at the end of fermentation. Chromosomal karyotyping and proteome analysis of ZG27 and ZTW1 suggested that this breeding strategy caused large-scale genome structural variations and global gene expression diversities in the mutants. Genetic manipulation further demonstrated that the altered expression activity of some genes (such as ERG1, ERG9, and ERG11) involved in ergosterol synthesis partly explained the trait improvement in ZG27.


Subject(s)
Ergosterol/biosynthesis , Ethanol/metabolism , Genetic Engineering , Industrial Microbiology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Fermentation , Genetic Variation , Phenotype , Proteomics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism
15.
Carbohydr Polym ; 110: 203-8, 2014 Sep 22.
Article in English | MEDLINE | ID: mdl-24906747

ABSTRACT

A universal method to enhance productivity and viscosity of bacterial exopolysaccharides was developed. The technique was based on the principle that ampicillin can inhibit the biosynthesis of peptidoglycan, which shares a common synthetic pathway with that of bacterial exopolysaccharides. Serial passages of three typical representatives of bacterial EPS-producing strains, namely Sphingomonas elodea, Xanthomonas campestris, and Paenibacillus elgii, were subjected to ampicillin, which was used as a stressor and a mutagen. These mutant strains are advantageous over other strains because of two major factors. First, all of the resulting strains were almost mutants with increase in EPS productivity and viscosity. Second, isolated serial strains showed different levels of increase in EPS production and viscosity to satisfy the different requirements of practical applications. No differences were observed in the monosaccharide composition produced by the mutant and parent strains; however, high-viscosity mutant strains exhibited higher molecular weights. The results confirmed that the developed method is a controlled universal one that can improve exopolysaccharides productivity and viscosity.


Subject(s)
Ampicillin/metabolism , Mutagens/metabolism , Paenibacillus/metabolism , Polysaccharides, Bacterial/metabolism , Sphingomonas/metabolism , Xanthomonas campestris/metabolism , Anti-Bacterial Agents/metabolism , Carbohydrate Sequence , Industrial Microbiology , Molecular Sequence Data , Paenibacillus/chemistry , Paenibacillus/drug effects , Paenibacillus/genetics , Polysaccharides, Bacterial/chemistry , Sphingomonas/chemistry , Sphingomonas/drug effects , Sphingomonas/genetics , Viscosity , Xanthomonas campestris/chemistry , Xanthomonas campestris/drug effects , Xanthomonas campestris/genetics
16.
Bioresour Technol ; 152: 371-6, 2014.
Article in English | MEDLINE | ID: mdl-24316480

ABSTRACT

The protective effect and the mechanisms of trehalose accumulation in industrial Saccharomyces cerevisiae strains were investigated during ethanol fermentation. The engineered strains with more intercellular trehalose achieved significantly higher fermentation rates and ethanol yields than their wild strain ZS during very high gravity (VHG) fermentation, while their performances were not different during regular fermentation. The VHG fermentation performances of these strains were consistent with their growth capacity under osmotic stress and ethanol stress, the key stress factors during VHG fermentation. These results suggest that trehalose accumulation is more important for VHG fermentation of industrial yeast strains than regular one. The differences in membrane integrity and antioxidative capacity of these strains indicated the possible mechanisms of trehalose as a protectant under VHG condition. Therefore, trehalose metabolic engineering may be a useful strategy for improving the VHG fermentation performance of industrial yeast strains.


Subject(s)
Ethanol/metabolism , Fermentation , Industrial Microbiology , Saccharomyces cerevisiae/metabolism , Trehalose/metabolism , Antioxidants/metabolism , Catalase/metabolism , Cell Membrane/metabolism , Gene Deletion , Intracellular Space/metabolism , Metabolic Engineering , Microbial Viability , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae Proteins/metabolism , Stress, Physiological , Superoxide Dismutase/metabolism
17.
Appl Microbiol Biotechnol ; 98(7): 3059-70, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24346281

ABSTRACT

Whole-genome shuffling (WGS) is a powerful technology of improving the complex traits of many microorganisms. However, the molecular mechanisms underlying the altered phenotypes in isolates were less clarified. Isolates with significantly enhanced stress tolerance and ethanol titer under very-high-gravity conditions were obtained after WGS of the bioethanol Saccharomyces cerevisiae strain ZTW1. Karyotype analysis and RT-qPCR showed that chromosomal rearrangement occurred frequently in genome shuffling. Thus, the phenotypic effects of genomic structural variations were determined in this study. RNA-Seq and physiological analyses revealed the diverse transcription pattern and physiological status of the isolate S3-110 and ZTW1. Our observations suggest that the improved stress tolerance of S3-110 can be largely attributed to the copy number variations in large DNA regions, which would adjust the ploidy of yeast cells and expression levels of certain genes involved in stress response. Overall, this work not only constructed shuffled S. cerevisiae strains that have potential industrial applications but also provided novel insights into the molecular mechanisms of WGS and enhanced our knowledge on this useful breeding strategy.


Subject(s)
DNA Shuffling , Genomic Structural Variation , Metabolic Engineering/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Karyotyping , Real-Time Polymerase Chain Reaction
18.
PLoS One ; 8(12): e85022, 2013.
Article in English | MEDLINE | ID: mdl-24376860

ABSTRACT

The application of active dry yeast (ADY) in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS) process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes.


Subject(s)
Biofuels , Ethanol/metabolism , Industrial Microbiology/methods , Saccharomyces cerevisiae/genetics , Stress, Physiological/genetics , Dehydration , Fermentation/physiology , Gene Expression Regulation, Fungal/genetics , Gene Expression Regulation, Fungal/physiology , Proteomics , Real-Time Polymerase Chain Reaction , Saccharomyces cerevisiae/physiology , Species Specificity
19.
Bioresour Technol ; 134: 87-93, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23500564

ABSTRACT

The optimization, purification and characterization of bioflocculant produced by Paenibacillus elgii B69 were investigated. The bioflocculant was an exopolysaccharide composed of glucose, glucuronic acid, mannose and xylose. The maximum bioflocculant production was about 25.63 g/L achieved with sucrose at 51.35 g/L, peptone at 6.78 g/L and yeast extract at 0.47 g/L optimized by response-surface methodology. In addition, a series of experiments was performed to investigate the flocculation activities towards kaolin clay, dyeing pigment, heavy metal ion, and real wastewater and the result indicated the new bioflocculant had high activities towards all the tested pollutions. These results showed its great potential for water pretreatment used in industry.


Subject(s)
Paenibacillus/metabolism , Polysaccharides/chemistry , Wastewater/microbiology , Water Purification/methods , Adsorption , Biodegradation, Environmental/drug effects , Carbon/pharmacology , Color , Extracellular Space/drug effects , Extracellular Space/metabolism , Flocculation , Ions , Metals, Heavy/isolation & purification , Nitrogen/pharmacology , Paenibacillus/drug effects , Reproducibility of Results , Water Pollutants, Chemical/isolation & purification
20.
Appl Microbiol Biotechnol ; 97(5): 2067-76, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23344998

ABSTRACT

An understanding of the genetic basis underlying the phenotypic variations of yeast strains would guide the breeding of this useful microorganism. Here, comparative functional genomics (CFG) of two bioethanol Saccharomyces cerevisiae strains (YJS329 and ZK2) with different stress tolerances and ethanol fermentation performances were performed. Our analysis indicated that different patterns of gene expression in the central carbon metabolism, antioxidative factors, and membrane compositions of these two strains are the main contributors to their various traits. Some of the differently expressed genes were directly caused by the genomic structural variations between YJS329 and ZK2. Moreover, CFG of these two strains also led to novel insights into the mechanism of stress tolerance in yeast. For example, it was found that more oleic acid in the plasma membrane contributes to the acetic acid tolerance of yeast. Based on the genetic information particular to each strain, strategies to improve their adaptability and ethanol fermentation performances were designed and confirmed. Thus, CFG could not only help reveal basis of phenotypic diversities but also guide the genetic breeding of industrial microorganisms.


Subject(s)
Ethanol/metabolism , Genomics/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , DNA Shuffling/methods , Gene Expression Profiling , Industrial Microbiology/methods , Metabolic Engineering/methods , Metabolic Networks and Pathways/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...