Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38668211

ABSTRACT

In this research, a method was developed for fabricating Au-Au nanorod array substrates through the deposition of large-area Au nanostructures on an Au nanorod array using a galvanic cell reaction. The incorporation of a granular structure enhanced both the number and intensity of surface-enhanced Raman scattering (SERS) hot spots on the substrate, thereby elevating the SERS performance beyond that of substrates composed solely of an Au nanorod. Calculations using the finite difference time domain method confirmed the generation of a strong electromagnetic field around the nanoparticles. Motivated by the electromotive force, Au ions in the chloroauric acid solution were reduced to form nanostructures on the nanorod array. The size and distribution density of these granular nanostructures could be modulated by varying the reaction time and the concentration of chloroauric acid. The resulting Au-Au nanorod array substrate exhibited an active, uniform, and reproducible SERS effect. With 1,2-bis(4-pyridyl)ethylene as the probe molecule, the detection sensitivity of the Au-Au nanorod array substrate was enhanced to 10-11 M, improving by five orders of magnitude over the substrate consisting only of an Au nanorod array. For a practical application, this substrate was utilized for the detection of pesticides, including thiram, thiabendazole, carbendazim, and phosmet, within the concentration range of 10-4 to 5 × 10-7 M. An analytical model combining a random forest and a one-dimensional convolutional neural network, referring to the important variable-one-dimensional convolutional neural network model, was developed for the precise identification of thiram. This approach demonstrated significant potential for biochemical sensing and rapid on-site identification.

2.
Nat Commun ; 14(1): 7944, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38040766

ABSTRACT

Singularities ubiquitously exist in different fields and play a pivotal role in probing the fundamental laws of physics and developing highly sensitive sensors. Nevertheless, achieving higher-order (≥3) singularities, which exhibit superior performance, typically necessitates meticulous tuning of multiple (≥3) coupled degrees of freedom or additional introduction of nonlinear potential energies. Here we propose theoretically and confirm using mechanics experiments, the existence of an unexplored cusp singularity in the phase-tracked (PhT) steady states of a pair of coherently coupled mechanical modes without the need for multiple (≥3) coupled modes or nonlinear potential energies. By manipulating the PhT singularities in an electrostatically tunable micromechanical system, we demonstrate an enhanced cubic-root response to frequency perturbations. This study introduces a new phase-tracking method for studying interacting systems and sheds new light on building and engineering advanced singular devices with simple and well-controllable elements, with potential applications in precision metrology, portable nonreciprocal devices, and on-chip mechanical computing.

3.
Microsyst Nanoeng ; 9: 138, 2023.
Article in English | MEDLINE | ID: mdl-37941763

ABSTRACT

High-performance micro-electro-mechanical system (MEMS) gyrocompasses for north-finding systems have been very popular for decades. In this paper, a MEMS north-finding system (NFS) based on virtual maytagging (VM) is presented for the first time. In stark contrast to previous schemes of MEMS-based NFSs (e.g., carouseling, maytagging) and the abandoning rate table, we developed a honeycomb disk resonator gyroscope (HDRG) and two commercial accelerometers for azimuth detection. Instead of the physical rotation of the integrated turntable in traditional NFSs, the vibratory working modes of the HDRG are rotated periodically with electronic control to reduce the uncertainty in the azimuth. After systematically analyzing the principle of NFSs with VM, we designed tests to verify the practicability at the sensor level. A bias instability of 0.0078°/h can be obtained during one day with VM in an HDRG. We also implemented comparative north-finding experiments to further check our strategy at the system level. The accuracy in the azimuth can reach 0.204° for 5 min at 28.2° latitude with VM and 0.172° with maytagging. The results show that without any mechanical turning parts, VM technology makes it possible to develop high-precision handheld MEMS NFSs.

4.
Micromachines (Basel) ; 14(10)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37893394

ABSTRACT

The MEMS gyroscope is one of the basic units of inertial navigation, whose performance and accuracy is noteworthy. Because of the limitations of processing technology and other factors, the relative manufacturing error of MEMS gyroscopes is usually large. Errors directly lead to a frequency mismatch of resonant structures and consequently restrict the performance improvement of the gyroscope. This study proposes a mechanical trimming technique combining the addition and removal of gold in a ring MEMS gyroscope. Firstly, the analysis of the gyroscope dynamics and error model and trimming theory provides theoretical guidance for the trimming process. Secondly, the method of adjusting the mass is investigated, and the ablation threshold of femtosecond laser parameters on gold is analyzed, which provides the process with parameters for the trimming experiment. Finally, the frequency trimming process is conducted in three steps, including the addition of gold spheres and the removal of gold spheres and gold film, which are applicable to the trimming process at different rates of frequency split. The results shows that the proposed method can reduce the frequency split of the gyroscope from 4.36 to 0.017 Hz.

5.
Micromachines (Basel) ; 14(9)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37763918

ABSTRACT

In capacitive microelectromechanical system (MEMS) devices, the application of dielectric materials causes long-term charging problems in the dielectric layers or substrates, which especially affect the repeatability and stability of high-performance devices. Due to the difficulties of observation and characterization of charge accumulation, an accurate characterization method is needed to study the effect of charge and propose suppression methods. In this paper, we analyze the influence of charge accumulation on the MSRG and propose a characterization method for charge accumulation based on stiffness variation. Experiments are carried out to characterize the charge accumulation in MSRG, and the effect of temperature on the process is also investigated. In the experiment, the charge accumulation is characterized accurately by the variation of the frequency split and stiffness axes. Furthermore, the acceleration of the charge accumulation is observed at high temperatures, as is the higher additional voltage from the charge accumulation.

6.
Opt Express ; 31(10): 16582-16592, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157734

ABSTRACT

Rotational motion of the optically trapped particle is a topic of enduring interest, while the changes of angular velocity in one rotation period remain largely unexplored. Here, we proposed the optical gradient torque in the elliptic Gaussian beam, and the instantaneous angular velocities of alignment and fluctuant rotation of the trapped non-spherical particles are investigated for the first time. The fluctuant rotations of optically trapped particles are observed, and the angular velocity fluctuated twice per rotation period, which can be used to determine the shape of trapped particles. Meanwhile, a compact optical wrench is invented based on the alignment, and its torque is adjustable and is larger than the torque of a linearly polarized wrench with the same power. These results provide a foundation for precisely modelling the rotational dynamics of optically trapped particles, and the presented wrench is expected to be a simple and practical micro-manipulating tool.

7.
Environ Sci Pollut Res Int ; 30(4): 10052-10062, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36066801

ABSTRACT

Varicella (chickenpox) is a serious public health problem in China, with the most reported cases among childhood vaccine-preventable infectious diseases, and its reported incidence has increased over 20-fold since 2005. Few previous studies have explored the association of multiple meteorological factors with varicella and considered the potential confounding effects of air pollutants. It is the first study to investigate and analyze the effects of multiple meteorological factors on varicella incidence, controlling for the confounding effects of various air pollutants. Daily meteorological and air pollution data and varicella cases were collected from January 1, 2015, to December 31, 2020, in Lu'an, Eastern China. A combination of the quasi-Poisson generalized additive model (GAM) and distributed lag nonlinear model (DLNM) was used to evaluate the meteorological factor-lag-varicella relationship, and the risk of varicella in extreme meteorological conditions. The maximum single-day lag effects of varicella were 1.288 (95%CI, 1.201-1.381, lag 16 day), 1.475 (95%CI, 1.152-1.889, lag 0 day), 1.307 (95%CI, 1.196-1.427, lag 16 day), 1.271 (95%CI, 0.981-1.647, lag 4 day), and 1.266 (95%CI, 1.162-1.378, lag 21 day), when mean temperature, diurnal temperature range (DTR), mean air pressure, wind speed, and sunshine hours were -5.8°C, 13.5°C, 1035.5 hPa, 6 m/s, and 0 h, respectively. At the maximum lag period, the overall effects of mean temperature and pressure on varicella showed W-shaped curves, peaked at 17.5°C (RR=2.085, 95%CI: 1.480-2.937) and 1035.5 hPa (RR=5.481, 95%CI: 1.813-16.577), while DTR showed an M-shaped curve and peaked at 4.4°C (RR=6.131, 95%CI: 1.120-33.570). Sunshine hours were positively correlated with varicella cases at the lag of 0-8 days and 0-9 days when sunshine duration exceeded 10 h. Furthermore, the lag effects of extreme meteorological factors on varicella cases were statistically significant, except for the extremely high wind speed. We found that mean temperature, mean air pressure, DTR, and sunshine hours had significant nonlinear effects on varicella incidence, which may be important predictors of varicella early warning.


Subject(s)
Air Pollutants , Chickenpox , Humans , Child , Incidence , Chickenpox/epidemiology , Meteorological Concepts , Temperature , China/epidemiology
8.
Micromachines (Basel) ; 13(10)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36295910

ABSTRACT

In recent years, the application prospects of high-precision MEMS gyroscopes have been shown to be very broad, but the large temperature drift of MEMS gyroscopes limits their application in complex temperature environments. In response to this, we propose a method that combines mode reversal and real-time multiple regression compensation to compensate for the temperature drift of gyroscope bias. This method has strong adaptability to the environment, low computational cost, the algorithm is online in real time, and the compensation effect is good. The experimental results show that under the temperature cycle of -20~20 °C and the temperature change rate of 4 °C/min, the method proposed in this paper can reduce the zero-bias stability from about 27.8°/h to 0.4527°/h, and the zero-bias variation is reduced from 65.88°/h to 1.43°/h. This method improves the zero-bias stability of the gyroscope 61-fold and the zero-bias variation 46-fold. Further, the method can effectively suppress the zero-bias drift caused by the heating of the gyroscope during the start-up phase of the gyroscope. The zero-bias stability of the gyroscope can reach 0.0697°/h within 45 min of starting up, and the zero-bias repeatability from 0 to 5 min after startup is reduced from 0.629°/h to 0.095°/h.

9.
Micromachines (Basel) ; 13(9)2022 Sep 04.
Article in English | MEDLINE | ID: mdl-36144091

ABSTRACT

This paper proposes a new multiple folded-beam disk resonator whose thermoelastic quality factor is significantly improved by appropriately reducing the beam width and introducing integral-designed lumped masses. The quality factor of the fabricated resonator with (100) single crystal silicon reaches 710 k, proving to be a record in silicon disk resonators. Meanwhile, a small initial frequency split of the order-3 working modes endows the resonator with great potential for microelectromechanical systems (MEMS) gyroscopes application. Moreover, the experimental quality factor of resonators with different beam widths and relevant temperature experiment indicate that the dominating damping mechanism of the multiple folded-beam disk resonator is no longer thermoelastic damping.

10.
Micromachines (Basel) ; 13(7)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35888867

ABSTRACT

MEMS gyroscopes play an important role in inertial navigation measurements, which mainly works in n = 2 mode. However, mode matching is the basis for high-precision detection, which can improve the sensitivity, resolution, and signal-to-noise ratio of the gyroscopes. An initial frequency split is inevitably generated during the manufacturing process. There are two methods to eliminate the frequency split and to achieve mode matching for the gyroscopes, which are electrostatic tuning and mechanical trimming, respectively. In this paper, we report a novel ring MEMS resonator and a novel method of mechanical frequency tuning. The most prominent characteristic of the resonator is that 16 raised mass blocks are increased in the circumferential positions of the ring uniformly. This structural design can achieve mass-stiffness decoupling, which means that punching holes on the mass blocks only affects the mass distribution but the stiffness is almost unchanged for the resonator. We verify the mass-stiffness decoupling by way of comparing the simulation with the conventional resonator. In addition, we put up an online tuning platform based on a femtosecond laser and reduce a resonator's frequency split from 23.3 Hz to 0.4 Hz, which reveals that the frequency split is linearly related to the removed mass. These findings will have a referential significance for other transducers.

11.
Nanotechnology ; 33(35)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35580555

ABSTRACT

This study presents a novel sandwich composite structure that was designed for the ultra-sensitive detection of cyclotrimethylenetrinitramine (RDX). Au nanorod arrays (Au NRAs) were prepared and bound to 10-7M 6-MNA as adsorption sites for RDX, while Au nanorods (Au NRs) were modified using 10-5M 6-MNA as SERS probes. During detection, RDX molecules connect the SERS probe to the surface of the Au NRAs, forming a novel type of Au NRAs-RDX-Au NRs 'sandwich' composite structure. The electromagnetic coupling effect between Au NRs and Au NRAs is enhanced due to the molecular level of the connection spacing, resulting in new 'hot spots'. Meanwhile, Au NRAs and Au NRs have an auto-enhancement effect on 6-MNA. In addition, the presence of charge transfer in the formed 6-MNA-RDX complex induced chemical enhancement. The limits of detection of RDX evaluated by Raman spectroscopy using 6-MNA were as low as 10-12mg ml-1(4.5 × 10-15M) with good linear correlation between 10-12and 10-8mg ml-1(correlation coefficientR2 = 0.9985). This novel sandwich composite structure accurately detected RDX contamination in drinking water and on plant surfaces in an environment with detection limits as low as 10-12mg ml-1and 10-8mg ml-1.

12.
Nat Commun ; 13(1): 2352, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35487900

ABSTRACT

Electromechanical phonon-cavity systems are man-made micro-structures, in which vibrational energy can be coherently transferred between different degrees of freedom. In such devices, the energy transfer direction and coupling strength can be parametrically controlled, offering great opportunities for both fundamental studies and practical applications such as phonon manipulation and sensing. However, to date the investigation of such systems has largely been limited to linear vibrations, while their responses in the nonlinear regime remain yet to be explored. Here, we demonstrate nonlinear operation of electromechanical phonon-cavity systems, and show that the resonant response differs drastically from that in the linear regime. We further demonstrate that by controlling the parametric pump, one can achieve nonlinearity-mediated digitization and amplification in the frequency domain, which can be exploited to build high-performance MEMS sensing devices based on phonon-cavity systems. Our findings offer intriguing opportunities for creating frequency-shift-based sensors and transducers.

13.
Hum Immunol ; 83(1): 81-85, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34521568

ABSTRACT

OBJECTIVES: To study whether Vitamin D levels are causally associated with ankylosing spondylitis (AS). METHODS: Two-sample Mendelian randomization (TSMR) analysis was performed by employing MR-Egger regression, weighted median (WM1), inverse-variance weighted (IVW), and weight mode (WM2) methods. The odds ratio (OR) with 95% confidence intervals (CIs) was used to evaluate this association. RESULTS: The results of IVW show that no causal association between vitamin D and AS (OR = 0.999, 95%CI = 0.997, 1.002, P = 0.724). The MR-Egger regression results show that genetic pleiotropy does not bias the results (intercept = -4.474E-05, SE = 2.830E-05, P = 0.255). The MR-Egger method no supported causal association between vitamin D and AS (OR = 1.000, 95%CI = 0.996, 1.005, P = 0.879). WM1 (OR = 1.002, 95%CI = 0.999, 1.005, P = 0.837) and WM2 (OR = 0.998, 95%CI = 0.996, 1.002, P = 0.910) approach also not found a causal relationship between vitamin D levels and AS. The significant heterogeneity was not observed by Cochran's Q test. The "leave-one-out" analysis also proved lack of a single SNP affected the robustness of our results. CONCLUSION: Based on our analysis, there is lack of a strong evidence to support a causal inverse association between vitamin D levels and ankylosing spondylitis.


Subject(s)
Mendelian Randomization Analysis , Spondylitis, Ankylosing , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Spondylitis, Ankylosing/epidemiology , Spondylitis, Ankylosing/genetics , Vitamin D
14.
Talanta ; 236: 122824, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34635214

ABSTRACT

Ultra-sensitive detection of 2,4,6-trinitrotoluene (TNT) plays an important role in society security and human health. The Raman probe molecule p-aminothiophenol (PATP) can interact with TNT in three ways to form a TNT-PATP complex. In this paper, a 'sandwich' structure was developed to detect TNT with high sensitivity. Au nano-pillar arrays (AuNPAs) substrates modified by low-concentration PATP through Au-S bonds were acted as capture probe for TNT. Meanwhile, Ag nano-particles (AgNPs) modified by PATP at higher concentration were employed as tags for surface-enhanced Raman scattering (SERS). The formation of the TNT-PATP complex is not only the means by which AuNPAs substrates recognize and capture TNT, but also links the SERS tags to TNT, forming an AuNPAs-TNT-AgNPs 'sandwich' structure. The Raman signal of PATP was greatly enhanced mainly because novel 'hot spots' formed between the AuNPAs and AgNPs of the 'sandwich' structure. The Raman signal of PATP was further amplified by the chemical enhancement effect induced by the TNT-PATP complex formation. Based on this mechanism, the limit of detection (LOD) of TNT was determined from the Raman signal of PATP. The LOD reached 10-9 mg/mL (4.4 × 10-12 M), much lower than that suggested by the US Environmental Protection Agency (88 nM). Moreover, TNT was selectively detected over several TNT analogues 2,4-dinitrotoluene (DNT), p-nitrotoluene (NT) and hexogen (RDX). Finally, the 'sandwich' structure was successfully applied to TNT detection in environmental water and sand.


Subject(s)
Spectrum Analysis, Raman , Trinitrotoluene , Humans , Limit of Detection , Silver , Trinitrotoluene/analysis , United States
15.
Microsyst Nanoeng ; 7: 79, 2021.
Article in English | MEDLINE | ID: mdl-34721887

ABSTRACT

Whole-angle gyroscopes have broad prospects for development with inherent advantages of excellent scale factor, wide bandwidth and measurement range, which are restrictions on rate gyroscopes. Previous studies on the whole-angle mode are based mostly on the linear model of Lynch, and the essential nonlinearity of capacitive displacement detection is always neglected, which has significant negative effects on the performance. In this paper, a novel real-time calibration method of capacitive displacement detection is proposed to eliminate these nonlinear effects. This novel method innovatively takes advantage of the relationship between the first and third harmonic components of detective signals for calibration. Based on this method, the real-time calibration of capacitive displacement detection is achieved and solves the problems of traditional methods, which are usually related to the vibration amplitude, environmental variations and other factors. Furthermore, this novel calibration method is embedded into a whole-angle control system to restore the linear capacitive response in real time and then combined with a microshell resonator for the first time to exploit the enormous potential of an ultrahigh Q factor and symmetric structure. The effectiveness is proven because the angle drift is reduced significantly to improve the scale-factor nonlinearity by 14 times to 0.79 ppm with 0.0673°/h bias instability and a 0.001°/s rate threshold, which is the best reported performance of the MEMS whole-angle gyroscope thus far. More importantly, this novel calibration method can be applied for all kinds of resonators with the requirement of a linear capacitive response even under a large resonant amplitude.

16.
Micromachines (Basel) ; 12(11)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34832725

ABSTRACT

MEMS resonators have become core devices in a large number of fields; however, due to their complex structures, the finite element analysis (FEA) method is still the main method for their theoretical analysis. The traditional finite element analysis method faces the disadvantages of large calculation amount and long simulation time, which limits the development of high-performance MEMS resonators. This paper demonstrates a high-speed and high-accuracy simulation tool based on the artificial neural network, where a multilayer perceptron (MLP) neural network model is constructed. The typical structural parameters of MEMS resonator are used as the input layer, and its performance indicators produced by the finite element analysis method are the output layer. After iteratively trained with 4000 samples, the cumulative error of the neural network decreases to 0.0017 and a prediction network model is obtained. Compared with the finite element analysis results, the structural accuracy error predicted by the neural network model can be controlled within 6%, but its runtime is shortened by 15,000 times. This high-speed and high-accuracy mathematical modeling method can effectively improve the analyzing efficiency and provide a promising tool for the design and optimization of different complex MEMS resonators, which exhibit remarkable accuracy and speed.

17.
Micromachines (Basel) ; 12(10)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34683321

ABSTRACT

Microrobots have a wide range of applications. The rigid-flexible composite stereoscopic technology based on ultraviolet laser cutting technology is primarily researched for the design and manufacture of microrobots and has been used to fabricate microscale motion mechanisms and robots. This paper introduces a monolithic processing technology based on the rigid-flexible composite stereoscopic process. Based on this process, a split-actuator micro flapping-wing air vehicle with a size of 15 mm × 2.5 mm × 30 mm was designed. We proposed a batch manufacturing method capable of processing multiple micro air vehicles at the same time. The main structure of 22 flapping-wing micro air vehicles can be processed at the same time within the processing range of the composite sheet with an area of 80 mm × 80 mm, and the processing effect is good.

18.
Opt Lett ; 46(18): 4635-4638, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34525067

ABSTRACT

Levitated optomechanical systems experience a tremendous development on detecting weak force and torque with the center of mass motion and rotation of the levitated particle. Here the levitated optomechanical system is established on a rotating platform, and the centrifugal motion of the particle is observed after rotating the optical platform. The centrifugal displacement of the particle is experimentally proven to show a quadratic function relation with the rotation speed, and the stiffness of the trap and the mass of the levitated particle are obtained from it separately. Furthermore, the centrifugal motion makes the particle deviate from the laser focus center, which would decrease the particle spin speed. These results will help to understand the centrifugal motion and fully consider this effect when the optomechanical system rotates.

19.
Micromachines (Basel) ; 12(8)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34442591

ABSTRACT

A miniature deformable squama mechanics based on piezoelectric actuation inspired by the deformable squama is proposed in this paper. The overall size of the mechanics is 16 mm × 6 mm × 6 mm, the weight is only 140 mg, the deflection angle range of the mechanical deformation is -15°~45°, and the mechanical deformation is controllable. The small-batch array processing of the miniature deformable squama mechanics, based on the stereoscopic process, laid the technological foundation for applying the deformed squama array arrangement. We also designed and manufactured a small actuation control boost circuit and a mobile phone piezoelectric control assistant application that makes it convenient to perform short-range non-contact control of the deformation of the squama. The proposed system arranges the deformed squamae into groups to form the skin and controlls the size and direction of the signals input to each group of the squama array, thereby making the skin able to produce different shapes to create deformable skin.

20.
Micromachines (Basel) ; 12(1)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33419169

ABSTRACT

For micro-electromechanical system (MEMS) resonators, once the devices are fabricated and packaged, their intrinsic quality factors (Q) will be fixed and cannot be changed, which seriously limits the further improvement of the resonator's performance. In this paper, parametric excitation is applied in a push-pull driven disk resonator gyroscope (DRG) to improve its sensitivity by an electrical pump, causing an arbitrary increase of the "effective Q". However, due to the differential characteristics of the push-pull driving method, the traditional parametric excitation method is not applicable. As a result, two novel methods are proposed and experimentally carried out to achieve parametric excitation in the push-pull driven DRGs, resulting in a maximum "effective Q" of 2.24 × 106 in the experiment, about a 7.6 times improvement over the intrinsic Q. Besides, subharmonic excitation is also theoretically analyzed and experimentally characterized. The stability boundary of parametric excitation, defined by a threshold voltage, is theoretically predicted and verified by related experiments. It is demonstrated that, when keeping the gyroscope's vibration at a constant amplitude, the fundamental frequency driving voltage will decrease with the increasing of the parametric voltage and will drop to zero at its threshold value. In this case, the gyroscope operates in a generalized parametric resonance condition, which is called subharmonic excitation. The novel parametric and subharmonic excitation theories displayed in this paper are proven to be efficient and tunable dynamical methods with great potential for adjusting the quality factor flexibly, which can be used to further enhance the resonator's performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...