Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Med Chem ; 29(9): 1622-1639, 2022.
Article in English | MEDLINE | ID: mdl-34455959

ABSTRACT

BACKGROUND: It is found that the prognosis of gliomas of the same grade has large differences among World Health Organization (WHO) grade II and III in clinical observation. Therefore, a better understanding of the genetics and molecular mechanisms underlying WHO grade II and III gliomas is required, with the aim of developing a classification scheme at the molecular level rather than the conventional pathological morphology level. METHODS: We performed survival analysis combined with machine learning methods of Least Absolute Shrinkage and Selection Operator using expression datasets downloaded from the Chinese Glioma Genome Atlas as well as The Cancer Genome Atlas. Risk scores were calculated by the product of expression level of overall survival-related genes and their multivariate Cox proportional hazards regression coefficients. WHO grade II and III gliomas were categorized into the low-risk subgroup, medium-risk subgroup, and high-risk subgroup. We used the 16 prognostic-related genes as input features to build a classification model based on prognosis using a fully connected neural network. Gene function annotations were also performed. RESULTS: The 16 genes (AKNAD1, C7orf13, CDK20, CHRFAM7A, CHRNA1, EFNB1, GAS1, HIST2H2BE, KCNK3, KLHL4, LRRK2, NXPH3, PIGZ, SAMD5, ERINC2, and SIX6) related to the glioma prognosis were screened. The 16 selected genes were associated with the development of gliomas and carcinogenesis. The accuracy of an external validation data set of the fully connected neural network model from the two cohorts reached 95.5%. Our method has good potential capability in classifying WHO grade II and III gliomas into low-risk, medium-risk, and high-risk subgroups. The subgroups showed significant (P<0.01) differences in overall survival. CONCLUSION: This resulted in the identification of 16 genes that were related to the prognosis of gliomas. Here we developed a computational method to discriminate WHO grade II and III gliomas into three subgroups with distinct prognoses. The gene expressionbased method provides a reliable alternative to determine the prognosis of gliomas.


Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Glioma/diagnosis , Glioma/genetics , Humans , Machine Learning , Prognosis , World Health Organization
2.
Biomed Res Int ; 2020: 2471915, 2020.
Article in English | MEDLINE | ID: mdl-32420331

ABSTRACT

Tobacco exposure is one of the major risks for the initiation and progress of lung cancer. The exact corresponding mechanisms, however, are mainly unknown. Recently, a growing body of evidence has been collected supporting the involvement of DNA methylation in the regulation of gene expression in cancer cells. The identification of tobacco-related signature methylation probes and the analysis of their regulatory networks at different molecular levels may be of a great help for understanding tobacco-related tumorigenesis. Three independent lung adenocarcinoma (LUAD) datasets were used to train and validate the tobacco exposure pattern classification model. A deep selecting method was proposed and used to identify methylation signature probes from hundreds of thousands of the whole epigenome probes. Then, BIMC (biweight midcorrelation coefficient) algorithm, SRC (Spearman's rank correlation) analysis, and shortest path tracing method were explored to identify associated genes at gene regulation level and protein-protein interaction level, respectively. Afterwards, the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis and GO (Gene Ontology) enrichment analysis were used to analyze their molecular functions and associated pathways. 105 probes were identified as tobacco-related DNA methylation signatures. They belong to 95 genes which are involved in hsa04512, hsa04151, and other important pathways. At gene regulation level, 33 genes are uncovered to be highly related to signature probes by both BIMC and SRC methods. Among them, FARSB and other eight genes were uncovered as Hub genes in the gene regulatory network. Meanwhile, the PPI network about these 33 genes showed that MAGOH, FYN, and other five genes were the most connected core genes among them. These analysis results may provide clues for a clear biological interpretation in the molecular mechanism of tumorigenesis. Moreover, the identified signature probes may serve as potential drug targets for the precision medicine of LUAD.


Subject(s)
Adenocarcinoma of Lung , DNA Methylation , DNA, Neoplasm , Databases, Genetic , Epigenome , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Lung Neoplasms , Tobacco Use , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , DNA, Neoplasm/genetics , DNA, Neoplasm/metabolism , Gene Expression Profiling , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Tobacco Use/adverse effects , Tobacco Use/genetics , Tobacco Use/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...