Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848490

ABSTRACT

Loop dynamics redesign is an important strategy to manipulate protein function. Cellobiose 2-epimerase (CE) and other members of its superfamily are widely used for diverse industrial applications. The structural feature of the loops connecting barrel helices contributes greatly to the differences in their functional characteristics. Inspired by the in-silico mutation with molecular dynamics (MD) simulation analysis, we propose a strategy for identifying disulfide bond mutation candidates based on the prediction of protein flexibility and residue-residue interaction. The most beneficial mutant with the newly introduced disulfide bond would simultaneously improve both its thermostability and its reaction propensity to the targeting isomerization product. The ratio of the isomerization/epimerization catalytic rate was improved from 4:103 to 9:22. MD simulation and binding free energy calculations were applied to provide insights into molecular recognition upon mutations. The comparative analysis of enzyme/substrate binding modes indicates that the altered catalytic reaction pathway is due to less efficient binding of the native product. The key residue responsible for the observed phenotype was identified by energy decomposition and was further confirmed by the mutation experiment. The rational design of the key loop region might be a promising strategy to alter the catalytic behavior of all (α/α)6-barrel-like proteins.

2.
Mol Biotechnol ; 64(6): 650-659, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35048315

ABSTRACT

D-Mannose has great value in the treatment of chronic diseases. D-Mannose isomerase can catalyze the bioconversion of D-fructose to D-mannose. Therefore, a novel D-mannose isomerase gene (Strh-MIase) from Stenotrophomonas rhizophila strain IS26 was expressed, purified, and characterized for the industrial production of D-mannose. The specific activities of the Strh-MIase for D-mannose and D-fructose were 437.5 ± 0.8 U/mg and 267.2 ± 0.7 U/mg. Its optimal temperature and pH were 50 °C and 7.0. The enzymatic bioconversion produced 25 g/L D-mannose from concentration D-fructose (100 g/L) in 6 h by recombinant Strh-MIase, resulting in a final yield of 25%. Sodium phosphate inhibition has little influence on D-mannose production when a high concentration of D-fructose is used as substrate. We demonstrate that the metal ions improve the efficiency of D-mannose isomerase because of the enhancement of its thermostability. Moreover, the possible catalytic residues of Strh-MIase were identified by site-directed mutagenesis.


Subject(s)
Aldose-Ketose Isomerases , Mannose , Aldose-Ketose Isomerases/metabolism , Fructose/chemistry , Hydrogen-Ion Concentration , Kinetics , Stenotrophomonas , Substrate Specificity , Temperature
3.
J Agric Food Chem ; 69(29): 8268-8275, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34231359

ABSTRACT

Cellobiose 2-epimerase (CE) can catalyze bioconversion of lactose to its prebiotic derivative epilactose. The catalytic property of a novel CE from Treponema brennaborense (Trbr-CE) was investigated. Trbr-CE showed the highest catalytic efficiency of epimerization toward lactose among all of the previously reported CEs. This enzyme's specific activity could reach as high as 208.5 ± 5.3 U/mg at its optimum temperature, which is 45 °C. More importantly, this enzyme demonstrated a considerably high activity at low temperatures, suggesting Trbr-CE as a promising enzyme for industrial low-temperature production of epilactose. This structurally flexible enzyme exhibited a comparatively high binding affinity toward substrates, which was confirmed by both experimental verification and computational analysis. Molecular dynamics (MD) simulations and binding free energy calculations were applied to provide insights into molecular recognition upon temperature changes. Compared with thermophilic CEs, Trbr-CE presents a more negative enthalpy change and a higher entropy change when the temperature drops.


Subject(s)
Cellobiose , Racemases and Epimerases , Lactose , Racemases and Epimerases/genetics , Temperature , Treponema
SELECTION OF CITATIONS
SEARCH DETAIL
...