Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
AoB Plants ; 16(4): plae029, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988684

ABSTRACT

Salicylic acid (SA) is an essential phytoregulator that is widely used to promote the synthesis of high-value nutraceuticals in plants. However, its application in daylily, an ornamental plant highly valued in traditional Chinese medicine, has not been reported. Herein, we investigated the exogenous SA-induced physiological, transcriptional and biochemical changes in long yellow daylily (LYD). We found that 2 mg/L foliar SA treatment significantly improved LYD plant growth and yield. Transcriptome sequencing and differentially expressed genes (DEGs) analysis revealed that the phenylpropanoid biosynthesis, isoquinoline alkaloid biosynthesis, sulfur metabolism, plant hormone signal transduction and tyrosine metabolism were significantly induced in SA-treated leaves. Many transcription factors and antioxidant system-related DEGs were induced under the SA treatment. Biochemical analyses showed that the leaf contents of soluble sugar, soluble protein (Cpr), ascorbic acid (AsA) and colchicine were significantly increased by 15.15% (from 30.16 ±â€…1.301 to 34.73 ±â€…0.861 mg/g), 19.54% (from 60.3 ±â€…2.227 to 72.08 ±â€…1.617 mg/g), 30.45% (from 190.1 ±â€…4.56 to 247.98 ±â€…11.652 µg/g) and 73.05% (from 3.08 ±â€…0.157 to 5.33 ±â€…0.462 µg/g), respectively, under the SA treatment. Furthermore, we identified 15 potential candidate genes for enhancing the growth, production and phytochemical content of LYD. Our results provide support for the bioaccumulation of colchicine in yellow daylily and valuable resources for biotechnological-assisted production of this important nutraceutical in Hemerocallis spp.

2.
Genes (Basel) ; 15(5)2024 04 26.
Article in English | MEDLINE | ID: mdl-38790180

ABSTRACT

Kohlrabi is an important swollen-stem cabbage variety belonging to the Brassicaceae family. However, few complete chloroplast genome sequences of this genus have been reported. Here, a complete chloroplast genome with a quadripartite cycle of 153,364 bp was obtained. A total of 132 genes were identified, including 87 protein-coding genes, 37 transfer RNA genes and eight ribosomal RNA genes. The base composition analysis showed that the overall GC content was 36.36% of the complete chloroplast genome sequence. Relative synonymous codon usage frequency (RSCU) analysis showed that most codons with values greater than 1 ended with A or U, while most codons with values less than 1 ended with C or G. Thirty-five scattered repeats were identified and most of them were distributed in the large single-copy (LSC) region. A total of 290 simple sequence repeats (SSRs) were found and 188 of them were distributed in the LSC region. Phylogenetic relationship analysis showed that five Brassica oleracea subspecies were clustered into one group and the kohlrabi chloroplast genome was closely related to that of B. oleracea var. botrytis. Our results provide a basis for understanding chloroplast-dependent metabolic studies and provide new insight for understanding the polyploidization of Brassicaceae species.


Subject(s)
Brassica , Genome, Chloroplast , Phylogeny , Genome, Chloroplast/genetics , Brassica/genetics , Microsatellite Repeats/genetics , Base Composition/genetics , Codon Usage , Chloroplasts/genetics , Whole Genome Sequencing/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...