Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(17): 21709-21721, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38651381

ABSTRACT

Antiangiogenic therapy is an effective way to disrupt nutrient supply and starve tumors, but it is restricted by poor efficacy and negative feedback-induced tumor relapse. In this study, a neuropilin-1 (NRP-1)-targeted nanomedicine (designated as FPPT@Axi) is reported for spatiotemporal tumor suppression by combining photodynamic therapy (PDT) with antiangiogenesis. In brief, FPPT@Axi is prepared by utilizing an NRP-1-targeting chimeric peptide (Fmoc-K(PpIX)-PEG8-TKPRR) to encapsulate the antiangiogenic drug Axitinib (Axi). Importantly, the NRP-1-mediated targeting property enables FPPT@Axi to selectively concentrate at vascular endothelial and breast cancer cells, facilitating the production of reactive oxygen species (ROS) in situ for specific vascular disruption and enhanced cell apoptosis under light stimulation. Moreover, the codelivered Axi can further inhibit vascular endothelial growth factor receptor (VEGFR) to impair the negative feedback of PDT-induced tumor neovascularization. Consequently, FPPT@Axi spatiotemporally restrains the tumor growth through blocking angiogenesis, destroying tumor vessels, and inducing tumor apoptosis. Such an NRP-1-mediated targeting codelivery system sheds light on constructing an appealing candidate with translational potential by using clinically approved PDT and chemotherapy.


Subject(s)
Angiogenesis Inhibitors , Neovascularization, Pathologic , Neuropilin-1 , Photochemotherapy , Neuropilin-1/metabolism , Humans , Animals , Mice , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Female , Axitinib/pharmacology , Axitinib/chemistry , Axitinib/therapeutic use , Nanomedicine , Apoptosis/drug effects , Human Umbilical Vein Endothelial Cells , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Mice, Inbred BALB C , Cell Line, Tumor , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use , Reactive Oxygen Species/metabolism , Mice, Nude
2.
ACS Appl Mater Interfaces ; 15(51): 59165-59174, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38100370

ABSTRACT

Immunotherapy is known to be a promising strategy in the clinical treatment of malignant tumors, but it has received generally low response rates in various tumors because of the poor immunogenicity and multiple immunosuppressive microenvironments. A self-delivery photodynamic re-educator, denoted as CCXB, is synthesized through the self-assembly of chlorine e6 (Ce6) and celecoxib (CXB). As a carrier-free nanomedicine, CCXB shows a high drug loading rate, improved water stability, superior cellular uptake, and tumor accumulation capability. In comparison with free Ce6, CCXB triggers much stronger photodynamic therapy (PDT) to reduce the proliferation of breast cancer cells and activates robust immune responses via the induction of immunogenic cell death (ICD). Better yet, CXB-mediated cyclooxygenase 2 (COX-2) inhibition can decrease the level of synthesis of prostaglandin E2 (PGE2) to further improve immunosuppressive microenvironments. With the increase of cytotoxic T lymphocytes (CTLs) and decrease of regulatory T cells (Tregs) in tumor, in vivo antitumor immunity is significantly amplified to inhibit the metastasis of breast cancer. This study sheds light on developing drug codelivery systems with collaborative mechanisms for immunotherapy of metastatic tumors.


Subject(s)
Breast Neoplasms , Nanoparticles , Photochemotherapy , Humans , Female , Immunogenic Cell Death , Breast Neoplasms/pathology , Immunotherapy , T-Lymphocytes, Cytotoxic , Immunosuppressive Agents/pharmacology , Cell Line, Tumor , Photosensitizing Agents/pharmacology , Tumor Microenvironment
3.
J Appl Genet ; 58(3): 381-391, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28191600

ABSTRACT

Tumour necrosis factor alpha (TNF-α) is one kind of cytokines which is related to inflammation and lipid metabolism. TNF-α cDNA was cloned from the liver of blunt snout bream (Megalobrama amblycephala) through real-time polymerase chain reaction (PCR) and rapid amplification of cDNA ends (RACE) methods. The full-length cDNA of TNF-α covered 1467 bp, with an open reading frame (ORF) of 723 bp, which encodes 240 amino acids. It possessed the TNF family signature IIIPDDGIYFVYSQ. After the lipopolysaccharide (LPS) challenge test, a graded tissue-specific expression pattern of TNF-α was observed and there was high expression abundance in the kidney, brain and liver. After 8 weeks feeding trial, liver samples, two groups fed with 6% and 11% lipid levels, were collected. The results showed that, for fish fed with high-fat diet, the triglyceride of serum and lipid content of liver were elevated. Furthermore, TNF-α and peroxisome proliferator-activated receptors (PPARα, ß) mRNA expression of fish fed 11% lipid diet were significantly up-regulated (p < 0.05). Lipoprotein lipase (LPL) and PPARγ mRNA expression of fish fed 11% lipid lever diet were significantly decreased compared to those of fish fed 6% (p < 0.05). The differences between the various expression of related genes in the high and low fat groups demonstrated that TNF-α played a key role in lipid metabolism, which may have an influence on fat metabolism through reducing fat synthesis and strengthening the ß-oxidation of fatty acid. These discrepancies warrant further research.


Subject(s)
Cyprinidae/metabolism , Lipid Metabolism , Lipoprotein Lipase/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Tumor Necrosis Factor-alpha/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , DNA, Complementary/genetics , Diet, High-Fat , Liver/metabolism , Open Reading Frames , Real-Time Polymerase Chain Reaction , Triglycerides/blood , Tumor Necrosis Factor-alpha/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...