Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124295, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38703407

ABSTRACT

Surface-enhanced Raman Spectroscopy (SERS) is extensively implemented in drug detection due to its sensitivity and non-destructive nature. Deep learning methods, which are represented by convolutional neural network (CNN), have been widely applied in identifying the spectra from SERS for powerful learning ability. However, the local receptive field of CNN limits the feature extraction of sequential spectra for suppressing the analysis results. In this study, a hybrid Transformer network, TMNet, was developed to identify SERS spectra by integrating the Transformer encoder and the multi-layer perceptron. The Transformer encoder can obtain precise feature representations of sequential spectra with the aid of self-attention, and the multi-layer perceptron efficiently transforms the representations to the final identification results. TMNet performed excellently, with identification accuracies of 99.07% for the spectra of hair containing drugs and 97.12% for those of urine containing drugs. For the spectra with additive white Gaussian, baseline background, and mixed noises, TMNet still exhibited the best performance among all the methods. Overall, the proposed method can accurately identify SERS spectra with outstanding noise resistance and excellent generalization and holds great potential for the analysis of other spectroscopy data.

2.
Analyst ; 148(24): 6282-6291, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37971331

ABSTRACT

Raman imaging (RI) is an outstanding technique that enables molecular-level medical diagnostics and therapy assessment by providing characteristic fingerprint and morphological information about molecules. However, obtaining high-quality Raman images generally requires a long acquisition time, up to hours, which is prohibitive for RI applications of timely cytopathology and histopathology analyses. To address this issue, image super-resolution (SR) based on deep learning, including convolutional neural networks and transformers, has been widely recognized as an effective solution to reduce the time required for achieving high-quality RI. In this study, a locality enhanced transformer network (LETNet) is proposed to perform Raman image SR. Specifically, the general architecture of the transformer is adopted with the replacement of self-attention by convolution to generate high-fidelity and detailed SR images. Additionally, the convolution in the LETNet is further optimized by utilizing depth-wise convolution to improve the computational efficiency of the model. Experiments on hyperspectral Raman images of breast cancer cells and Raman images of a few channels of brain tumor tissues demonstrate that the LETNet achieves superior 2×, 4×, and 8× SR with fewer parameters compared with other SR methods. Consequently, high-quality Raman images can be obtained with a significant reduction in time, ranging from 4 to 64 times. Overall, the proposed method provides a novel, efficient, and reliable solution to expedite high-quality RI and promote its application in real-time diagnosis and therapy.


Subject(s)
Acceleration , Brain Neoplasms , Humans , Brain Neoplasms/diagnostic imaging , Cytology , Diagnostic Imaging , Neural Networks, Computer , Image Processing, Computer-Assisted
3.
Anal Chim Acta ; 1262: 341264, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37179059

ABSTRACT

In this study, surface-enhanced Raman spectroscopy (SERS) charged probes and an inverted superhydrophobic platform were used to develop a detection method for agricultural chemicals residues (ACRs) in rice combined with lightweight deep learning network. First, positively and negatively charged probes were prepared to adsorb ACRs molecules to SERS substrate. An inverted superhydrophobic platform was prepared to alleviate the coffee ring effect and induce tight self-assembly of nanoparticles for high sensitivity. Chlormequat chloride of 15.5-0.05 mg/L and acephate of 100.2-0.2 mg/L in rice were measured with the relative standard deviation of 4.15% and 6.25%. SqueezeNet were used to develop regression models for the analysis of chlormequat chloride and acephate. And the excellent performances were obtained with the coefficients of determination of prediction of 0.9836 and 0.9826 and root-mean-square errors of prediction of 0.49 and 4.08. Therefore, the proposed method can realize sensitive and accurate detection of ACRs in rice.


Subject(s)
Deep Learning , Metal Nanoparticles , Oryza , Spectrum Analysis, Raman/methods , Agrochemicals , Oryza/chemistry , Chlormequat , Metal Nanoparticles/chemistry , Hydrophobic and Hydrophilic Interactions
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 296: 122668, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37001262

ABSTRACT

Apple fruit damages seriously cause product and economic losses, infringe consumer rights and interests, and have harmful effects on human and livestock health. In this study, Raman spectroscopy (RS) and cascade forest (CForest) were adopted to determine apple fruit damages. First, the RS spectra of healthy, bruised, Rhizopus-infected, and Botrytis-infected apples were measured. Spectral changes and band attribution were analyzed. Different modeling methods were combined with various pre-processing and dimension reduction methods to construct recognition models. Among all models, CForest constructed with full spectra processed by Savitsky-Golay smoothing obtained the best performance with accuracies of 100%, 91.96%, and 92.80% in the training, validation, and test sets (ACCTE). And the modeling time is reduced to 1/3 of the full-spectra model with a similar ACCTE of 91.56% after principal component analysis. Overall, RS and CForest provided a non-destructive, rapid, and accurate identification of apple fruit damages and could be used in disease recognition and safety assurance of other fruits.


Subject(s)
Fruit , Malus , Humans , Fruit/chemistry , Malus/chemistry , Spectrum Analysis, Raman/methods , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...