Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Nucl Med ; 57(7): 1130-5, 2016 07.
Article in English | MEDLINE | ID: mdl-27013696

ABSTRACT

UNLABELLED: We developed a prototype small-animal PET scanner based on depth-encoding detectors using dual-ended readout of small scintillator elements to produce high and uniform spatial resolution suitable for imaging the mouse brain. METHODS: The scanner consists of 16 tapered dual-ended-readout detectors arranged in a 61-mm-diameter ring. The axial field of view (FOV) is 7 mm, and the transaxial FOV is 30 mm. The scintillator arrays consist of 14 × 14 lutetium oxyorthosilicate elements, with a crystal size of 0.43 × 0.43 mm at the front end and 0.80 × 0.43 mm at the back end, and the crystal elements are 13 mm long. The arrays are read out by 8 × 8 mm and 13 × 8 mm position-sensitive avalanche photodiodes (PSAPDs) placed at opposite ends of the array. Standard nuclear-instrumentation-module electronics and a custom-designed multiplexer are used for signal processing. RESULTS: The detector performance was measured, and all but the crystals at the very edge could be clearly resolved. The average intrinsic spatial resolution in the axial direction was 0.61 mm. A depth-of-interaction resolution of 1.7 mm was achieved. The sensitivity of the scanner at the center of the FOV was 1.02% for a lower energy threshold of 150 keV and 0.68% for a lower energy threshold of 250 keV. The spatial resolution within a FOV that can accommodate the entire mouse brain was approximately 0.6 mm using a 3-dimensional maximum-likelihood expectation maximization reconstruction. Images of a hot-rod microphantom showed that rods with a diameter of as low as 0.5 mm could be resolved. The first in vivo studies were performed using (18)F-fluoride and confirmed that a 0.6-mm resolution can be achieved in the mouse head in vivo. Brain imaging studies with (18)F-FDG were also performed. CONCLUSION: We developed a prototype PET scanner that can achieve a spatial resolution approaching the physical limits of a small-bore PET scanner set by positron range and detector interaction. We plan to add more detector rings to extend the axial FOV of the scanner and increase sensitivity.


Subject(s)
Brain/diagnostic imaging , Positron-Emission Tomography/instrumentation , Animals , Electronics , Equipment Design , Fluorodeoxyglucose F18 , Image Processing, Computer-Assisted , Lutetium , Mice , Phantoms, Imaging , Radiopharmaceuticals , Reproducibility of Results , Silicates
2.
J Magn Reson ; 239: 50-6, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24380812

ABSTRACT

Understanding sources of electromagnetic interference are important in designing any electronic system. This is especially true when combining positron emission tomography (PET) and magnetic resonance imaging (MRI) in a multimodality system as coupling between the subsystems can degrade the performance of either modality. For this reason, eliminating radio frequency (RF) interference and gradient-induced eddy currents have been major challenges in building simultaneous hybrid PET/MRI systems. MRI requires negligible RF interference at the Larmor resonance frequency, while RF interference at almost any frequency may corrupt PET data. Moreover, any scheme that minimizes these interactions would, ideally, not compromise the performance of either subsystem. This paper lays out a plan to resolve these problems. A carbon fiber composite material is found to be a good RF shield at the Larmor frequency (300MHz in this work) while introducing negligible gradient eddy currents. This carbon fiber composite also provides excellent structural support for the PET detector components. Low frequency electromagnetic radiation (81kHz here) from the switching power supplies of the gradient amplifiers was also found to interfere with the PET detector. Placing the PET detector module between two carbon fiber tubes and grounding the inner carbon fiber tube to the PET detector module ground reduced this interference. Further reductions were achieved by adding thin copper (Cu) foil on the outer carbon fiber case and electrically grounding the PET detector module so that all 3 components had a common ground, i.e. with the PET detector in an electrostatic cage. Finally, gradient switching typical in MRI sequences can result in count losses in the particular PET detector design studied. Moreover, the magnitude of this effect depends on the location of the detector within the magnet bore and which MRI gradient is being switched. These findings have a bearing on future designs of PET/MRI systems.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Positron-Emission Tomography/instrumentation , Composite Resins , Electromagnetic Fields , Equipment Design , Radio Waves
3.
Phys Med Biol ; 56(19): 6327-36, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21896961

ABSTRACT

After many years of development, position-sensitive avalanche photodiodes (PSAPDs) are now being incorporated into a range of scintillation detector systems, including those used in high-resolution small-animal PET and PET/MR scanners. In this work, the signal, noise, signal-to-noise ratio (SNR), flood histogram and timing resolution were measured for lutetium oxyorthosilicate (LSO) scintillator arrays coupled to PSAPDs ranging in size from 10 to 20 mm, and the optimum bias voltage and working temperature were determined. Variations in the SNR performance of PSAPDs with the same dimensions were small, but the SNR decreased significantly with increasing PSAPD size and increasing temperature. Smaller PSAPDs (10 mm and 15 mm in width) produced acceptable flood histograms at 24 °C, and cooling lower than 16 °C produced little improvement. The optimum bias voltage was about 25 V below the break down voltage. The larger 20 mm PSAPDs have lower SNR and require cooling to 0-7 °C for acceptable performance. The optimum bias voltage is also lower (35 V or more below the break down voltage depending on the temperature). Significant changes in the timing resolution were observed as the bias voltage and temperature varied. Higher bias voltages provided better timing resolution. The best timing resolution obtained for individual crystals was 2.8 ns and 3.3 ns for the 10 mm and 15 mm PSAPDs, respectively. The results of this work provide useful guidance for selecting the bias voltage and working temperature for scintillation detectors that incorporate PSAPDs as the photodetector.


Subject(s)
Electronics/instrumentation , Lutetium/chemistry , Positron-Emission Tomography/instrumentation , Silicates/chemistry , Transducers , Animals , Electronics/methods , Humans , Photometry/instrumentation , Photometry/methods , Positron-Emission Tomography/methods , Sensitivity and Specificity , Signal-To-Noise Ratio , Temperature , Time Factors
4.
Phys Med Biol ; 56(17): N165-74, 2011 Sep 07.
Article in English | MEDLINE | ID: mdl-21828899

ABSTRACT

We have proposed a zoom-in positron emission tomography (PET) system that incorporates a high-resolution detector into an existing PET scanner to obtain high-resolution images of a region of interest. Previously we have shown by computer simulations that the high-resolution detector can improve the overall system performance in terms of spatial resolution and lesion detectability. In this study, we assessed the resolution improvement in a real system by incorporating a high-resolution detector into our existing microPET II scanner. The high-resolution detector consists of a 14 × 28 array of 0.5 × 0.5 × 10 mm³ lutetium oxyorthosilicate scintillator elements and is placed near the center of the microPET II scanner. It is coupled to two 64-channel photomultiplier tubes (PMTs) via tapered optical fiber bundles. The PMT signals were read out by the electronics in the microPET II scanner. A 15 µCi Na-22 point source was positioned at various locations above the high-resolution detector. Images were reconstructed using the data measured by the microPET II scanner alone and the microPET II data combined with the high-resolution detector data. Profiles taken through the reconstructed point sources show substantial reduction in full-width-at-half-maximum along the direction parallel to the face of the high-resolution detector.


Subject(s)
Image Enhancement/methods , Image Processing, Computer-Assisted/methods , Positron-Emission Tomography/instrumentation , Scintillation Counting/methods , Diagnostic Imaging , Equipment Design , Lutetium/chemistry , Phantoms, Imaging , Positron-Emission Tomography/methods , Reproducibility of Results , Sensitivity and Specificity , Silicates/chemistry , Tomography, Emission-Computed/methods
5.
Phys Med Biol ; 56(1): 139-53, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21119228

ABSTRACT

By using detectors with good depth encoding accuracy (∼2 mm), an animal PET scanner can be built with a small ring diameter and thick crystals to simultaneously obtain high spatial resolution and high sensitivity. However, there will be large wedge-shaped gaps between detector modules in such a scanner if traditional cuboid crystal arrays are used in a polygonal arrangement. The gaps can be minimized by using tapered scintillator arrays enabling the sensitivity of the scanner to be further improved. In this work, tapered lutetium oxyorthosilicate (LSO) arrays with different crystal dimensions and different combinations of inter-crystal reflector and crystal surface treatments were manufactured and their performance was evaluated. Arrays were read out from both ends by position-sensitive avalanche photodiodes (PSAPDs). In the optimal configuration, arrays consisting of 0.5 mm LSO elements could be clearly resolved and a depth of interaction resolution of 2.6 mm was obtained for a 20 mm thick array. For this tapered array, the intrinsic spatial is degraded from 0.67 to 0.75 mm compared to a standard cuboidal array with similar dimensions, while the increase in efficiency is 41%. Tapered scintillator arrays offer the prospect of improvements in sensitivity and sampling for small-bore scanners, without large increases in manufacturing complexity.


Subject(s)
Lutetium , Positron-Emission Tomography/instrumentation , Silicates , Animals , Equipment Design , Lutetium/chemistry , Positron-Emission Tomography/methods , Reproducibility of Results , Sensitivity and Specificity , Silicates/chemistry
6.
Med Phys ; 37(5): 1995-2003, 2010 May.
Article in English | MEDLINE | ID: mdl-20527533

ABSTRACT

PURPOSE: Hybrid positron emission tomography (PET)/magnetic resonance (MR) imaging systems have recently been built that allow functional and anatomical information obtained from PET and MR to be acquired simultaneously. The authors have developed a robust coregistration scheme for a first generation small animal PET/MR imaging system and illustrated the potential of this system to study intratumoral heterogeneity in a mouse model. METHODS: An alignment strategy to fuse simultaneously acquired PET and MR data, using the MR imaging gradient coordinate system as the reference basis, was developed. The fidelity of the alignment was evaluated over multiple study sessions. In order to explore its robustness in vivo, the alignment strategy was applied to explore the heterogeneity of glucose metabolism in a xenograft tumor model, using 18F-FDG-PET to guide the acquisition of localized 1H MR spectra within a single imaging session. RESULTS: The alignment method consistently fused the PET/MR data sets with subvoxel accuracy (registration error mean = 0.55 voxels, < 0.28 mm); this was independent of location within the field of view. When the system was used to study intratumoral heterogeneity within xenograft tumors, a correlation of high 18F-FDG-PET signal with high choline/creatine ratio was observed. CONCLUSIONS: The authors present an implementation of an efficient and robust coregistration scheme for multimodal noninvasive imaging using PET and MR. This setup allows time-sensitive, multimodal studies of physiology to be conducted in an efficient manner.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Algorithms , Animals , Mice , Neoplasms/diagnostic imaging , Phantoms, Imaging , Time Factors
7.
J Nucl Med ; 50(9): 1401-8, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19690029

ABSTRACT

UNLABELLED: We have constructed a dedicated breast PET/CT scanner capable of high-resolution functional and anatomic imaging. Here, we present an initial characterization of scanner performance during patient imaging. METHODS: The system consisted of a lutetium oxyorthosilicate-based dual-planar head PET camera (crystal size, 3 x 3 x 20 mm) and 768-slice cone-beam CT. The position of the PET heads (separation and height) could be adjusted for varying breast dimensions. For scanning, the patient lay prone on a specialized bed and inserted a single pendent breast through an aperture in the table top. Compression of the breast as used in mammography is not required. PET and CT systems rotate in the coronal plane underneath the patient sequentially to collect fully tomographic datasets. PET images were reconstructed with the fully 3-dimensional maximum a posteriori method, and CT images were reconstructed with the Feldkamp algorithm, then spatially registered and fused for display. Phantom scans were obtained to assess the registration accuracy between PET and CT images and the influence of PET electronics and activity on CT image quality. We imaged 4 women with mammographic findings highly suggestive of breast cancer (breast imaging reporting and data system, category 5) in an ongoing clinical trial. Patients were injected with (18)F-FDG and imaged for 12.5 min per breast. From patient data, noise-equivalent counting rates and the singles-to-trues ratio (a surrogate for the randoms fraction) were calculated. RESULTS: The average registration error between PET and CT images was 0.18 mm. PET electronics and activity did not significantly affect CT image quality. For the patient trial, biopsy-confirmed cancers were visualized on dedicated breast PET/CT on all patient scans, including the detection of ductal carcinoma in situ in 1 case. The singles-to-trues ratio was found to be inversely correlated with breast volume in the field of view, suggesting that larger breasts trend toward increased noise-equivalent counting rates for all other things equal. CONCLUSION: Scanning of the uncompressed breast with dedicated breast PET/CT can accurately visualize suspected lesions in 3 dimensions.


Subject(s)
Breast Neoplasms/diagnosis , Image Enhancement/instrumentation , Positron-Emission Tomography/instrumentation , Subtraction Technique/instrumentation , Tomography, X-Ray Computed/instrumentation , Aged , Equipment Design , Equipment Failure Analysis , Female , Humans , Middle Aged , Reproducibility of Results , Sensitivity and Specificity
8.
Phys Med Biol ; 54(17): 5155-72, 2009 Sep 07.
Article in English | MEDLINE | ID: mdl-19671971

ABSTRACT

In this paper, we study position-dependent timing shifts and timing resolution in position sensitive avalanche photodiodes (PSAPDs) and their effects on the coincidence window used in positron emission tomography (PET) systems using these devices. There is a delay in PSAPD signals that increases as the excitation position moves from the corner to the center of the device and the timing resolution concurrently worsens. The difference in timing between the center and the corner can be up to 30.7 ns for a 14 x 14 mm(2) area PSAPD. This means that a PSAPD-based PET system could require a very wide coincidence timing window (>60 ns) if this effect is not corrected, although the individual crystal pairs still have full-width half-maximum (FWHM) timing resolutions better than 7.4 ns. In addition to characterizing the timing properties of PSAPDs, two correction methods were developed and applied to data from a pair of PSAPD detectors. These two timing offset corrections reduced the timing shift of a crystal pair from 52.4 ns to 9.7 ns or 1.3 ns, improved the FWHM timing resolution of the detector pair from 24.6 ns to 9.5 ns or 6.0 ns and reduced the timing window (sufficient to cover at least twice the FWHM for all crystal pairs) from 65.1 ns to 22.0 ns or 15.2 ns, respectively. A two-step timing alignment method is proposed for a PET system consisting of multiple PSAPDs. Lastly, the effect of PSAPD size on the timing performance was also evaluated.


Subject(s)
Light , Positron-Emission Tomography/instrumentation , Electrodes , Positron-Emission Tomography/methods , Surface Properties , Time Factors
9.
Phys Med Biol ; 54(14): 4605-19, 2009 Jul 21.
Article in English | MEDLINE | ID: mdl-19567945

ABSTRACT

Small animal PET scanners may be improved by increasing the sensitivity, improving the spatial resolution and improving the uniformity of the spatial resolution across the field of view. This may be achieved by using PET detectors based on crystal elements that are thin in the axial and transaxial directions and long in the radial direction, and by employing depth of interaction (DOI) encoding to minimize the parallax error. With DOI detectors, the diameter of the ring of the PET scanner may also be decreased. This minimizes the number of detectors required to achieve the same solid angle coverage as a scanner with a larger ring diameter and minimizes errors due to non-collinearity of the annihilation photons. In this study, we characterize prototype PET detectors that are finely pixelated with individual LSO crystal element sizes of 0.5 mm x 0.5 mm x 20 mm and 0.7 mm x 0.7 mm x 20 mm, read out at both ends by position sensitive avalanche photodiodes (PSAPDs). Both a specular reflector and a diffuse reflector were evaluated. The detectors were characterized based on the ability to clearly resolve the individual crystal elements, the DOI resolution and the energy resolution. Our results indicate that a scanner based on any of the four detector designs would offer improved spatial resolution and more uniform spatial resolution compared to present day small animal PET scanners. The greatest improvements to spatial resolution will be achieved when the detectors employing the 0.5 mm x 0.5 mm x 20 mm crystals are used. Monte Carlo simulations were performed to demonstrate that 2 mm DOI resolution is adequate to ensure uniform spatial resolution for a small animal PET scanner geometry using these detectors. The sensitivity of such a scanner was also simulated using Monte Carlo simulations and was shown to be greater than 10% for a four ring scanner with an inner diameter of 6 cm, employing 20 detectors per scanner ring.


Subject(s)
Image Enhancement/instrumentation , Image Interpretation, Computer-Assisted/instrumentation , Lutetium , Positron-Emission Tomography/instrumentation , Silicates , Transducers , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Miniaturization , Reproducibility of Results , Sensitivity and Specificity
10.
Phys Med Biol ; 54(13): 4273-87, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19531852

ABSTRACT

A dedicated breast PET/CT system has been constructed at our institution, with the goal of having increased spatial resolution and sensitivity compared to whole-body systems. The purpose of this work is to describe the design and the performance characteristics of the PET component of this device. Average spatial resolution of a line source in warm background using maximum a posteriori (MAP) reconstruction was 2.5 mm, while the average spatial resolution of a phantom containing point sources using filtered back projection (FBP) was 3.27 mm. A sensitivity profile was computed with a point source translated across the axial field of view (FOV) and a peak sensitivity of 1.64% was measured at the center of the FOV. The average energy resolution determined on a per-crystal basis was 25%. The characteristic dead time for the front-end electronics and data acquisition (DAQ) was determined to be 145 ns and 3.6 micros, respectively. With no activity outside the FOV, a peak noise-equivalent count rate of 18.6 kcps was achieved at 318 microCi (11.766 MBq) in a cylindrical phantom of diameter 75 mm. After the effects of exposing PET detectors to x-ray flux were evaluated and ameliorated, a combined PET/CT scan was performed. The percentage standard deviations of uniformity along axial and transaxial directions were 3.7% and 2.8%, respectively. The impact of the increased reconstructed spatial resolution compared to typical whole-body PET scanners is currently being assessed in a clinical trial.


Subject(s)
Breast Neoplasms/diagnosis , Image Enhancement/instrumentation , Positron-Emission Tomography/instrumentation , Subtraction Technique/instrumentation , Tomography, X-Ray Computed/instrumentation , Humans , Phantoms, Imaging , Pilot Projects , Reproducibility of Results , Sensitivity and Specificity
11.
Phys Med Biol ; 54(6): 1757-71, 2009 Mar 21.
Article in English | MEDLINE | ID: mdl-19258685

ABSTRACT

We investigate a novel detector using a lutetium oxyorthosilicate (LSO) scintillator and YGG (yttrium-aluminum-gallium oxide:cerium, Y(3)(Al,Ga)(5)O(12):Ce) phosphor to construct a detector with continuous depth-of-interaction (DOI) information. The far end of the LSO scintillator is coated with a thin layer of YGG phosphor powder which absorbs some fraction of the LSO scintillation light and emits wavelength-shifted photons with a characteristic decay time of approximately 50 ns. The near end of the LSO scintillator is directly coupled to a photodetector. The photodetector detects a mixture of the LSO light and the light emitted by YGG. With appropriate placement of the coating, the ratio of the light converted from the YGG coating with respect to the unconverted LSO light can be made to depend on the interaction depth. DOI information can then be estimated by inspecting the overall light pulse decay time. Experiments were conducted to optimize the coating method. 19 ns decay time differences across the length of the detector were achieved experimentally when reading out a 1.5 x 1.5 x 20 mm(3) LSO crystal with unpolished surfaces and half-coated with YGG phosphor. The same coating scheme was applied to a 4 x 4 LSO array. Pulse shape discrimination (PSD) methods were studied to extract DOI information from the pulse shape changes. The DOI full-width-half-maximum (FWHM) resolution was found to be approximately 8 mm for this 2 cm thick array.


Subject(s)
Luminescent Agents/chemistry , Scintillation Counting/methods , Lutetium/chemistry , Sensitivity and Specificity , Silicates/chemistry , Time Factors
12.
Phys Med Biol ; 54(2): 433-45, 2009 Jan 21.
Article in English | MEDLINE | ID: mdl-19098356

ABSTRACT

Many laboratories develop depth-encoding detectors to improve the trade-off between spatial resolution and sensitivity in positron emission tomography (PET) scanners. One challenge in implementing these detectors is the need to calibrate the depth of interaction (DOI) response for the large numbers of detector elements in a scanner. In this work, we evaluate two different methods, a linear detector calibration and a linear crystal calibration, for determining DOI calibration parameters. Both methods can use measurements from any source distribution and location, or even the intrinsic lutetium oxyorthosilicate (LSO) background activity, and are therefore well suited for use in a depth-encoding PET scanner. The methods were evaluated by measuring detector and crystal DOI responses for all eight detectors in a prototype depth-encoding PET scanner. The detectors utilize dual-ended readout of LSO scintillator arrays with position-sensitive avalanche photodiodes (PSAPDs). The LSO arrays have 7 x 7 elements, with a crystal size of 0.92 x 0.92 x 20 mm(3) and pitch of 1.0 mm. The arrays are read out by two 8 x 8 mm(2) area PSAPDs placed at opposite ends of the arrays. DOI is measured by the ratio of the amplitude of the total energy signals measured by the two PSAPDs. Small variations were observed in the DOI responses of different crystals within an array as well as DOI responses for different arrays. A slightly nonlinear dependence of the DOI ratio on depth was observed and the nonlinearity was larger for the corner and edge crystals. The DOI calibration parameters were obtained from the DOI responses measured in a singles mode. The average error between the calibrated DOI and the known DOI was 0.8 mm if a linear detector DOI calibration was used and 0.5 mm if a linear crystal DOI calibration was used. A line source phantom and a hot rod phantom were scanned on the prototype PET scanner. DOI measurement significantly improved the image spatial resolution no matter which DOI calibration method was used. A linear crystal DOI calibration provided slightly better image spatial resolution compared with a linear detector DOI calibration.


Subject(s)
Positron-Emission Tomography/instrumentation , Animals , Biomedical Engineering , Biophysical Phenomena , Humans , Phantoms, Imaging , Positron-Emission Tomography/statistics & numerical data , Sensitivity and Specificity
13.
IEEE Trans Nucl Sci ; 56(5): 2594-2599, 2009 Oct 07.
Article in English | MEDLINE | ID: mdl-20046796

ABSTRACT

A new approach to depth of interaction (DOI) encoding for a pixelated LSO array using a single multi-channel PMT was investigated. In this method the DOI information was estimated by taking advantage of optical crosstalk between LSO elements and examining the standard deviation (spread) of signals on all channels of the PMT. Unpolished and polished 6×6 LSO arrays with a crystal size of 1.3×1.3×20 mm(3) were evaluated on a Hamamatsu H7546 64-channel PMT. The arrays were placed on the center of the PMT and the central 16 channels of the PMT were individually read out and digitized. For the unpolished array, all crystals were resolved in the flood histogram. An average DOI resolution of 8 mm was obtained. The energy resolution was ∼25% after the signal amplitude was corrected using the measured DOI information. For the polished array, the flood histogram was superior to the unpolished array, however no DOI information could be measured. Using unpolished crystals, this method could be a practical way to achieve limited DOI information in PET detectors. The standard deviation of all PMT channels can be readily obtained using a resistor network. Only five signals (four signals to determine the x-y position and one signal measuring the standard deviation) need to be digitized, and this method only requires a single photon detector to read out the array. Unlike phoswich detectors, the method does not require segmenting the scintillator array into layers. The measured DOI resolution was much worse than that obtained with the dual-ended readout method, however, it was similar to that obtained with a two-layer phoswich detector.

14.
IEEE Trans Nucl Sci ; 56(3): 549-556, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-20161023

ABSTRACT

Position-sensitive avalanche photodiodes (PSAPDs) are gaining widespread acceptance in modern PET scanner designs, and owing to their relative insensitivity to magnetic fields, especially in those that are MRI-compatible. Flood histograms in PET scanners are used to determine the crystal of annihilation photon interaction and hence, for detector characterization and routine quality control. For PET detectors that use PSAPDs, flood histograms show a characteristic pincushion distortion when Anger logic is used for event positioning. A small rotation in the flood histogram is also observed when the detectors are placed in a magnetic field. We first present a general purpose automatic method for spatial distortion correction for flood histograms of PSAPD-based PET detectors when placed both inside and outside a MRI scanner. Analytical formulae derived for this scheme are based on a hybrid approach that combines desirable properties from two existing event positioning schemes. The rotation of the flood histogram due to the magnetic field is determined iteratively and is accounted for in the scheme. We then provide implementation details of a method for crystal identification we have previously proposed and evaluate it for cases when the PET detectors are both outside and in a magnetic field. In this scheme, Fourier analysis is used to generate a lower-order spatial approximation of the distortion-corrected PSAPD flood histogram, which we call the 'template'. The template is then registered to the flood histogram using a diffeomorphic iterative intensity-based warping scheme. The calculated deformation field is then applied to the segmentation of the template to obtain a segmentation of the flood histogram. A manual correction tool is also developed for exceptional cases. We present a quantitative assessment of the proposed distortion correction scheme and crystal identification method against conventional methods. Our results indicate that our proposed methods lead to a large reduction in manual labor and indeed can routinely be used for calibration and characterization studies in MRI-compatible PET scanners based on PSAPDs.

15.
IEEE Trans Nucl Sci ; 56(3): 574-580, 2009 Jun 16.
Article in English | MEDLINE | ID: mdl-21072320

ABSTRACT

A magnetic resonance (MR) compatible positron emission tomography (PET) insert has been developed in our laboratory for simultaneous small animal PET/MR imaging. This system is based on lutetium oxyorthosilicate (LSO) scintillator arrays with position-sensitive avalanche photodiode (PSAPD) photodetectors. The PET performance of this insert has been measured. The average reconstructed image spatial resolution was 1.51 mm. The sensitivity at the center of the field of view (CFOV) was 0.35%, which is comparable to the simulation predictions of 0.40%. The average photopeak energy resolution was 25%. The scatter fraction inside the MRI scanner with a line source was 12% (with a mouse-sized phantom and standard 35 mm Bruker 1H RF coil), 7% (with RF coil only) and 5% (without phantom or RF coil) for an energy window of 350-650 keV. The front-end electronics had a dead time of 390 ns, and a trigger extension dead time of 7.32 µs that degraded counting rate performance for injected doses above ~0.75 mCi (28 MBq). The peak noise-equivalent count rate (NECR) of 1.27 kcps was achieved at 290 µCi (10.7 MBq). The system showed good imaging performance inside a 7-T animal MRI system; however improvements in data acquisition electronics and reduction of the coincidence timing window are needed to realize improved NECR performance.

16.
J Nucl Med ; 49(7): 1132-40, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18552140

ABSTRACT

UNLABELLED: Detectors with depth-encoding allow a PET scanner to simultaneously achieve high sensitivity and high spatial resolution. METHODS: A prototype PET scanner, consisting of depth-encoding detectors constructed by dual-ended readout of lutetium oxyorthosilicate (LSO) arrays with 2 position-sensitive avalanche photodiodes (PSAPDs), was developed. The scanner comprised 2 detector plates, each with 4 detector modules, and the LSO arrays consisted of 7 x 7 elements, with a crystal size of 0.9225 x 0.9225 x 20 mm and a pitch of 1.0 mm. The active area of the PSAPDs was 8 x 8 mm. The performance of individual detector modules was characterized. A line-source phantom and a hot-rod phantom were imaged on the prototype scanner in 2 different scanner configurations. The images were reconstructed using 20, 10, 5, 2, and 1 depth-of-interaction (DOI) bins to demonstrate the effects of DOI resolution on reconstructed image resolution and visual image quality. RESULTS: The flood histograms measured from the sum of both PSAPD signals were only weakly depth-dependent, and excellent crystal identification was obtained at all depths. The flood histograms improved as the detector temperature decreased. DOI resolution and energy resolution improved significantly as the temperature decreased from 20 degrees C to 10 degrees C but improved only slightly with a subsequent temperature decrease to 0 degrees C. A full width at half maximum (FWHM) DOI resolution of 2 mm and an FWHM energy resolution of 15% were obtained at a temperature of 10 degrees C. Phantom studies showed that DOI measurements significantly improved the reconstructed image resolution. In the first scanner configuration (parallel detector planes), the image resolution at the center of the field of view was 0.9-mm FWHM with 20 DOI bins and 1.6-mm FWHM with 1 DOI bin. In the second scanner configuration (detector planes at a 40 degrees angle), the image resolution at the center of the field of view was 1.0-mm FWHM with 20 DOI bins and was not measurable when using only 1 bin. CONCLUSION: PET scanners based on this detector design offer the prospect of high and uniform spatial resolution (crystal size, approximately 1 mm; DOI resolution, approximately 2 mm), high sensitivity (20-mm-thick detectors), and compact size (DOI encoding permits detectors to be tightly packed around the subject and minimizes number of detectors needed).


Subject(s)
Positron-Emission Tomography/instrumentation , Equipment Design/instrumentation , Lutetium , Phantoms, Imaging , Silicates , Temperature
17.
Proc Natl Acad Sci U S A ; 105(10): 3705-10, 2008 Mar 11.
Article in English | MEDLINE | ID: mdl-18319342

ABSTRACT

Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution of biologically targeted radiotracers with high sensitivity, but images generally lack anatomic context and are of lower spatial resolution. Integration of these technologies permits the acquisition of temporally correlated data showing the distribution of PET radiotracers and MRI contrast agents or MR-detectable metabolites, with registration to the underlying anatomy. An MRI-compatible PET scanner has been built for biomedical research applications that allows data from both modalities to be acquired simultaneously. Experiments demonstrate no effect of the MRI system on the spatial resolution of the PET system and <10% reduction in the fraction of radioactive decay events detected by the PET scanner inside the MRI. The signal-to-noise ratio and uniformity of the MR images, with the exception of one particular pulse sequence, were little affected by the presence of the PET scanner. In vivo simultaneous PET and MRI studies were performed in mice. Proof-of-principle in vivo MR spectroscopy and functional MRI experiments were also demonstrated with the combined scanner.


Subject(s)
Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Animals , Brain/metabolism , Mice , Protons , Whole Body Imaging
18.
J Nucl Med ; 47(12): 1968-76, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17138739

ABSTRACT

UNLABELLED: PET and MRI are powerful imaging techniques that are largely complementary in the information they provide. We have designed and built a MR-compatible PET scanner based on avalanche photodiode technology that allows simultaneous acquisition of PET and MR images in small animals. METHODS: The PET scanner insert uses magnetic field-insensitive, position-sensitive avalanche photodiode (PSAPD) detectors coupled, via short lengths of optical fibers, to arrays of lutetium oxyorthosilicate (LSO) scintillator crystals. The optical fibers are used to minimize electromagnetic interference between the radiofrequency and gradient coils and the PET detector system. The PET detector module components and the complete PET insert assembly are described. PET data were acquired with and without MR sequences running, and detector flood histograms were compared with the ones generated from the data acquired outside the magnet. A uniform MR phantom was also imaged to assess the effect of the PET detector on the MR data acquisition. Simultaneous PET and MRI studies of a mouse were performed ex vivo. RESULTS: PSAPDs can be successfully used to read out large numbers of scintillator crystals coupled through optical fibers with acceptable performance in terms of energy and timing resolution and crystal identification. The PSAPD-LSO detector performs well in the 7-T magnet, and no visible artifacts are detected in the MR images using standard pulse sequences. CONCLUSION: The first images from the complete system have been successfully acquired and reconstructed, demonstrating that simultaneous PET and MRI studies are feasible and opening up interesting possibilities for dual-modality molecular imaging studies.


Subject(s)
Anatomy, Cross-Sectional/instrumentation , Magnetic Resonance Imaging/instrumentation , Positron-Emission Tomography/instrumentation , Subtraction Technique/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity , Systems Integration
SELECTION OF CITATIONS
SEARCH DETAIL
...