Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 233
Filter
1.
Chemistry ; : e202401674, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839567

ABSTRACT

Nitrile-aminothiol conjugation (NATC) stands out as a promising biocompatible ligation technique due to its high chemo-selectivity. Herein we investigated the reactivity and substrate scope of NAT conjugation chemistry, thus developing a novel pH dependent orthogonal NATC as a valuable tool for chemical biology. The study of reaction kinetics elucidated that the combination of heteroaromatic nitrile and aminothiol groups led to the formation of an optimal bioorthogonal pairing, which is pH dependent. This pairing system was effectively utilized for sequential and dual conjugation. Subsequently, these rapid (≈1 h) and high yield (>90%) conjugation strategies were successfully applied to a broad range of complex biomolecules, including oligonucleotides, chelates, small molecules and peptides. The effectiveness of this conjugation chemistry was demonstrated by synthesizing a fluorescently labelled antimicrobial peptide-oligonucleotide complex as a dual conjugate to imaging in live cells. This first-of-its-kind sequential NATC approach unveils unprecedented opportunities in modern chemical biology, showcasing exceptional adaptability in rapidly creating structurally complex bioconjugates. Furthermore, the results highlight its potential for versatile applications across fundamental and translational biomedical research.

2.
J Am Chem Soc ; 146(23): 15977-15985, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38713009

ABSTRACT

Unveiling innovative mechanisms to design new highly efficient fluorescent materials and, thereby, fabricate high-performance organic light-emitting diodes (OLEDs) is a concerted endeavor in both academic and industrial circles. Polycyclic aromatic hydrocarbons (PAHs) have been widely used as fluorescent emitters in blue OLEDs, but device performances are far from satisfactory. In response, we propose the concept of "nitrogen effects" endowed by doping electron-withdrawing nitrogen atoms into PAH fluorescence emitters. The presence of the n orbital on the imine nitrogen is conducive to promoting electron coupling, which leads to increased molar absorptivity and an accelerated radiative decay rate of emitters, thereby facilitating the Förster energy transfer (FET) process in the OLEDs. Additionally, electronically withdrawing nitrogen atoms enhances host-guest interactions, thereby positively affecting the FET process and the horizontal orientation factor of the emitting layer. To validate the "nitrogen effects" concept, cobalt-catalyzed multiple C-H annulation has been utilized to incorporate alkynes into the imine-based frameworks, which enables various imine-embedded PAH (IE-PAH) fluorescence emitters. The cyclization demonstrates notable regioselectivity, thereby offering a practical tool to precisely introduce peripheral groups at desired positions with bulky alkyl units positioned adjacent to the nitrogen atoms, which were previously beyond reach through the Friedel-Crafts reaction. Blue OLEDs fabricated with IE-PAHs exhibit outstanding performance with a maximum external quantum efficiency (EQEmax) of 32.7%. This achievement sets a groundbreaking record for conventional blue PAH-based fluorescent emitters, which have an EQEmax of 24.0%.

3.
Materials (Basel) ; 17(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38591565

ABSTRACT

With a large number of railroad and highway tunnels opening for operation, the diseases caused by hidden lining defects are increasing. The study of flow characteristics of freshly mixed concrete during tunnel lining casting is the key to revealing the formation mechanism of hidden defects. This paper revealed the location of blank lining formation by investigating the circumferential and longitudinal flow characteristics of concrete in the vault during tunnel pouring to provide suggestions for improving the quality of tunnel lining pouring for the various projects. This paper adopted the method of indoor testing, selected the suitable working conditions and flow parameters, validated the accuracy of the test with a numerical simulation, and simulated the secondary lining pouring process of the tunnel arch from the circumferential direction and longitudinal direction. This revealed the flow characteristics of the freshly mixed concrete in the process of pouring the arch lining. The flow of concrete in the arch lining was basically characterized by two major features which were similar to the flow in the pumping pipe and the layered flow. It also revealed the relationship between the concrete flow rate, flow distance, and the location of the formation of the blank lining risk zone with the slump of the concrete, the pumping pressure, and the radius of the tunnel.

4.
Materials (Basel) ; 17(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38673156

ABSTRACT

During the actual construction of tunnel sidewall lining, construction workers often use only one or two windows per layer for pouring in order to reduce the construction sequence, which often leads to a reduction in the quality of tunnel sidewall concrete pouring. Therefore, this study analysed the necessity of the window-by-window pouring of sidewall lining through the study of concrete flow characteristics of the tunnel sidewall lining pouring process, and the reasonable spacing of pouring windows was analysed. This study firstly verified the accuracy of the simulation parameters and the feasibility of the simulation method of the lining pouring process through indoor experiments and simulation analyses, and then it numerically simulated and analysed the flow of concrete during the lining pouring process of tunnel sidewalls. The following conclusions were made: the smaller the slump of the freshly mixed concrete, the higher the pumping flow rate; additionally, the shorter the one-time pouring distance, the smaller the spacing of the trolley feeding window should be. Furthermore, this study makes suggestions for the reasonable spacing of pouring trolleys under several working conditions.

5.
Eur J Pharmacol ; 971: 176541, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38556120

ABSTRACT

Spinal cord injury (SCI), a fatal condition, is characterized by progressive tissue degradation and extreme functional deficits with limited treatment options. Hesperetin, a natural flavonoid with potent antioxidant, antiapoptotic and anti-inflammatory properties, has yet to be systematically investigated for its therapeutic effects on neurological damage in rat models of SCI. In this study, rats were given oral hesperetin once daily for 28 days, and their locomotion and histopathological changes were assessed. The findings demonstrated that hesperetin alleviates neurological damage caused by SCI. The observed behavioral improvement could be due to an increase in the survival rate of neurons and oligodendrocytes. This improvement further boosted the ability to repair tissue and form myelin after SCI, ultimately resulting in better neurological outcomes. Furthermore, the present study revealed that hesperetin possesses potent antioxidant capabilities in the context of SCI, reducing the levels of harmful oxygen free radicals and increasing the activity of antioxidant enzymes. Additionally, hesperetin markedly inhibited injury-induced apoptosis, as assessed by caspase-3 immunofluorescence staining and the expression level of caspase-3, indicating the ability of hesperetin to prevent cell death after SCI. Finally, after SCI, hesperetin treatment effectively reduced the expression of inflammatory factors, including IL-1ß, TNFα, and NF-kB, demonstrating the anti-inflammatory effect of hesperetin. Together, our results suggest that hesperetin should be considered a valuable therapeutic aid following SCI, as its positive effects on the nervous system, including antioxidant, anti-inflammatory and antiapoptotic effects, may be crucial mechanisms through which hesperetin exerts neuroprotective effects against SCI.


Subject(s)
Antioxidants , Hesperidin , Spinal Cord Injuries , Rats , Animals , Caspase 3/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Apoptosis , Oxidative Stress , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Spinal Cord
6.
Int J Biol Macromol ; 263(Pt 2): 130523, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428771

ABSTRACT

As a natural pH-sensing colorant, purple sweet potato anthocyanins (PSPAs) have demonstrated great potential in colorimetric film for freshness monitoring. However, the photothermal instability of PSPAs is still a challengeable issue. Herein, γ-cyclodextrin metal-organic framework (CD-MOF) loaded with PSPAs (PSPAs@CD-MOF, i.e., PM) and eugenol (EUG) were incorporated in cellulose acetate (CA) matrix for developing a smart active colorimetric film of CA/PM/EUG, where PM and EUG were hydrogen-bonded with CA. Attentions were focused on the photothermal colorimetric stability, colorimetric response, and antibacterial activity of the films. The presence of PM and EUG endowed the film outstanding UV-blocking performance and enhanced the barrier against water vapor and oxygen. Target film of CA/PM15/EUG10 had good photothermal colorimetric stability due to the protection of CD-MOF on PSPAs and the color changes with pH-stimuli were sensitive and reversible. In addition to antioxidant activity, CA/PM15/EUG10 had antibacterial activity against Escherichia coli and Staphylococcus aureus. The application trial results indicated that the CA/PM15/EUG10 was valid to indicate pork freshness and extended the shelf-life by 100 % at 25 °C, which has demonstrated a good perspective on smart active packaging for freshness monitoring and shelf-life extension.


Subject(s)
Cellulose/analogs & derivatives , Cyclodextrins , Ipomoea batatas , Metal-Organic Frameworks , Pork Meat , Red Meat , Swine , Animals , Anthocyanins/pharmacology , Colorimetry , Eugenol , Anti-Bacterial Agents/pharmacology , Escherichia coli , Food Packaging , Hydrogen-Ion Concentration
7.
J Am Chem Soc ; 146(11): 7467-7479, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38446421

ABSTRACT

Interfacial interaction dictates the overall catalytic performance and catalytic behavior rules of the composite catalyst. However, understanding of interfacial active sites at the microscopic scale is still limited. Importantly, identifying the dynamic action mechanism of the "real" active site at the interface necessitates nanoscale, high spatial-time-resolved complementary-operando techniques. In this work, a Co3O4 homojunction with a well-defined interface effect is developed as a model system to explore the spatial-correlation dynamic response of the interface toward oxygen evolution reaction. Quasi in situ scanning transmission electron microscopy-electron energy-loss spectroscopy with high spatial resolution visually confirms the size characteristics of the interface effect in the spatial dimension, showing that the activation of active sites originates from strong interfacial electron interactions at a scale of 3 nm. Multiple time-resolved operando spectroscopy techniques explicitly capture dynamic changes in the adsorption behavior for key reaction intermediates. Combined with density functional theory calculations, we reveal that the dynamic adjustment of multiple adsorption configurations of intermediates by highly activated active sites at the interface facilitates the O-O coupling and *OOH deprotonation processes. The dual dynamic regulation mechanism accelerates the kinetics of oxygen evolution and serves as a pivotal factor in promoting the oxygen evolution activity of the composite structure. The resulting composite catalyst (Co-B@Co3O4/Co3O4 NSs) exhibits an approximately 70-fold turnover frequency and 20-fold mass activity than the monomer structure (Co3O4 NSs) and leads to significant activity (η10 ∼257 mV). The visual complementary analysis of multimodal operando/in situ techniques provides us with a powerful platform to advance our fundamental understanding of interfacial structure-activity relationships in composite structured catalysts.

8.
Indian J Pathol Microbiol ; 67(2): 466-468, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38391381

ABSTRACT

ABSTRACT: Adult rhabdomyoma is an uncommon and benign striated muscle tumor consisting of striated muscular tissue. This neoplasm usually originates from cardiac muscle, and extracardiac rhabdomyoma is extremely rare. Herein, we report a case of adult rhabdomyoma in the lung, which has only been reported once in the 1970s. A 62-year-old woman presented to our hospital with a solid nodule on the right upper lobe. We performed tumor resection surgery and confirmed the diagnosis of adult rhabdomyoma by postoperative pathological examination. Herein, we report the clinical and pathologic characteristics of pulmonary adult rhabdomyoma (PAR) and review the literature about adult rhabdomyoma.


Subject(s)
Lung Neoplasms , Rhabdomyoma , Humans , Rhabdomyoma/pathology , Rhabdomyoma/diagnosis , Rhabdomyoma/surgery , Female , Middle Aged , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/surgery , Lung/pathology , Lung/diagnostic imaging , Lung/surgery , Tomography, X-Ray Computed , Immunohistochemistry
9.
Small ; : e2309932, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38295134

ABSTRACT

Recently, zeolitic imidazolate frameworks (ZIFs) composites have emerged as promising precursors for synthesizing hollow-structured N-doped carbon-based noble-metal materials with diverse structures and compositions. Here, a strong/weak competitive coordination strategy is presented for synthesizing high-performance electrocatalysts with hollow features. During the competitive coordination process, the cubic zeolitic-imidazole framework-8 (Cube-8)@ZIF-67 with core-shell structures are transformed into Cube-8@ZIF-67@PF/POM with yolk-shell nanostructures employing phosphomolybdic acid (POM) and potassium ferricyanide (PF) as the strong chelator and the weak chelator, respectively. After calcination, the hollow Mo/Fe/Co@NC catalyst exhibits superior performance in both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Interestingly, the Mo/Fe/Co@NC catalyst exhibits efficient electrocatalytic performance for Zn-air batteries (ZABs), with a high power density (≈150 mW cm-2 ) and superior cycling life (≈500 h) compared to commercial platinum/carbon (Pt/C) and ruthenium dioxide (RuO2 ) mixture benchmarks catalysts. In addition, the density functional theory further proves that after the introduction of Mo and Fe atoms, the adsorption energy with the adsorption intermediates is weakened by adjusting the d-band center, thus weakening the reaction barrier and promoting the reaction kinetics of OER. Undoubtedly, this study presents novel insights into the fabrication of ZIFs-derived hollow structure bifunctional oxygen electrocatalysts for clean-energy diverse applications.

10.
J Am Chem Soc ; 146(2): 1224-1243, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38173272

ABSTRACT

Efficient and streamlined synthetic methods that facilitate the rapid build-up of structurally diverse π-conjugated systems are of paramount importance in the quest for organic optoelectronic materials. Among these methods, transition-metal-catalyzed oxidative Ar-H/Ar-H coupling reactions between two (hetero)arenes have emerged as a concise and effective approach for generating a wide array of bi(hetero)aryl and fused heteroaryl structures. This innovative approach bypasses challenges associated with substrate pre-activation processes, thereby allowing for the creation of frameworks that were previously beyond reach using conventional Ar-X/Ar-M coupling reactions. These inherent advantages have ushered in new design patterns for organic optoelectronic molecules that deviate from traditional methods. This ground-breaking approach enables the transcendence of the limitations of repetitive material structures, ultimately leading to the discovery of novel high-performance materials. In this Perspective, we provide an overview of recent advances in the development of organic optoelectronic materials through the utilization of transition-metal-catalyzed oxidative Ar-H/Ar-H coupling reactions. We introduce several notable synthetic strategies in this domain, covering both directed and non-directed oxidative Ar-H/Ar-H coupling strategies, dual chelation-assisted strategy and directed ortho-C-H arylation/cyclization strategy. Additionally, we shed light on the role of oxidative Ar-H/Ar-H coupling reactions in the advancement of high-performance organic optoelectronic materials. Finally, we discuss the current limitations of existing protocols and offer insights into the future prospects for this field.

11.
Acad Radiol ; 31(1): 93-103, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37544789

ABSTRACT

RATIONALE AND OBJECTIVES: This study aimed to create and verify a nomogram for preoperative prediction of Ki-67 expression in breast malignancy to assist in the development of personalized treatment strategies. MATERIALS AND METHODS: This retrospective study received approval from the institutional review board and included a cohort of 197 patients with breast malignancy who were admitted to our hospital. Ki-67 expression was divided into two groups based on a 14% threshold: low and high. A radiomics signature was built utilizing 1702 radiomics features based on an intra- and peritumoral (10 mm) regions of interest. Using multivariate logistic regression, radiomics signature, and ultrasound (US) characteristics, the nomogram was developed. To evaluate the model's calibration, clinical application, and predictive ability, decision curve analysis (DCA), the calibration curve, and the receiver operating characteristic curve were used, respectively. RESULTS: The final nomogram included three independent predictors: tumor size (P = .037), radiomics signature (P < .001), and US-reported lymph node status (P = .018). The nomogram exhibited satisfactory performance in the training cohort, demonstrating a specificity of 0.944, a sensitivity of 0.745, and an area under the curve (AUC) of 0.905. The validation cohort recorded a specificity of 0.909, a sensitivity of 0.727, and an AUC of 0.882. The DCA showed the nomogram's clinical utility, and the calibration curve revealed a high consistency among the expected and detected values. CONCLUSION: The nomogram used in this investigation can accurately predict Ki-67 expression in people with malignant breast tumors, helping to develop personalized treatment approaches.


Subject(s)
Breast Neoplasms , Nomograms , Humans , Female , Ki-67 Antigen , Radiomics , Retrospective Studies , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery
12.
Small ; 20(15): e2304574, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38009795

ABSTRACT

Direct selective transformation of greenhouse methane (CH4) to liquid oxygenates (methanol) can substitute energy-intensive two-step (reforming/Fischer-Tropsch) synthesis while creating environmental benefits. The development of inexpensive, selective, and robust catalysts that enable room temperature conversion will decide the future of this technology. Single-atom catalysts (SACs) with isolated active centers embedded in support have displayed significant promises in catalysis to drive challenging reactions. Herein, high-density Ni single atoms are developed and stabilized on carbon nitride (NiCN) via thermal condensation of preorganized Ni-coordinated melem units. The physicochemical characterization of NiCN with various analytical techniques including HAADF-STEM and X-ray absorption fine structure (XAFS) validate the successful formation of Ni single atoms coordinated to the heptazine-constituted CN network. The presence of uniform catalytic sites improved visible absorption and carrier separation in densely populated NiCN SAC resulting in 100% selective photoconversion of (CH4) to methanol using H2O2 as an oxidant. The superior catalytic activity can be attributed to the generation of high oxidation (NiIII═O) sites and selective C─H bond cleavage to generate •CH3 radicals on Ni centers, which can combine with •OH radicals to generate CH3OH.

13.
Small ; 20(22): e2310266, 2024 May.
Article in English | MEDLINE | ID: mdl-38098346

ABSTRACT

The interactions between the catalyst and support are widely used in many important catalytic reactions but the construction of strong interaction with definite microenvironments to understand the structure-activity relationship is still challenging. Here, strongly-interacted composites are prepared via selective exsolution of active NiSe2 from the host matrix of NiFe2O4 (S-NiSe2/NiFe2O4) taking advantage of the differences of migration energy, in which the NiSe2 possessed both high dispersion and small size. The characteristics of spatially resolved scanning transmission X-ray microscopy (STXM) coupled with analytical Mössbauer spectra for the surface and bulk electronic structures unveiled that this strongly interacted composite triggered more charge transfers from the NiSe2 to the host of NiFe2O4 while stabilizing the inherent atomic coordination of NiFe2O4. The obtained S-NiSe2/NiFe2O4 exhibits overpotentials of 290 mV at 10 mA cm-2 for oxygen evolution reaction (OER). This strategy is general and can be extended to other supported catalysts, providing a powerful tool for modulating the catalytic performance of strongly-interacted composites.

14.
iScience ; 26(12): 108435, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38077124

ABSTRACT

Layered double hydroxides (LDHs) are widely used in catalytic field, especially in photocatalysis, benefiting from the ultrathin 2D structure and luxuriant surface functional groups. However, the wide band gap and low utilization rate of solar spectrum affect their photocatalytic performance. Herein, we integrated n-type CoAl-LDH with p-type Cu2O nanoparticles to construct a p-n heterojunction with a strong built-in electric field, which can prevent photoinduced electron-hole pairs from recombination as well as facilitate charge transfer. With the X-ray photoelectron spectroscope and in situ Fourier transform infrared spectroscopy, we confirmed the charge transfer under light illumination complying with the type II-scheme mechanism and analyzed the intermediates during photocatalytic CO2 reduction reaction (CO2RR). The highest yields reached 320.9 µmol h-1 g-1 for CoAl-LDH@Cu2O-60 (LC-60) under 1 h light irradiation, which was about 1.6 times than the pristine CoAl-LDH. The sample also exhibited excellent stability which maintained 84.1% of initial performance after 4 circulations.

15.
Nat Commun ; 14(1): 6142, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37798263

ABSTRACT

Electrocatalytic CO2 reduction into value-added multicarbon products offers a means to close the anthropogenic carbon cycle using renewable electricity. However, the unsatisfactory catalytic selectivity for multicarbon products severely hinders the practical application of this technology. In this paper, we report a cascade AgCu single-atom and nanoparticle electrocatalyst, in which Ag nanoparticles produce CO and AgCu single-atom alloys promote C-C coupling kinetics. As a result, a Faradaic efficiency (FE) of 94 ± 4% toward multicarbon products is achieved with the as-prepared AgCu single-atom and nanoparticle catalyst under ~720 mA cm-2 working current density at -0.65 V in a flow cell with alkaline electrolyte. Density functional theory calculations further demonstrate that the high multicarbon product selectivity results from cooperation between AgCu single-atom alloys and Ag nanoparticles, wherein the Ag single-atom doping of Cu nanoparticles increases the adsorption energy of *CO on Cu sites due to the asymmetric bonding of the Cu atom to the adjacent Ag atom with a compressive strain.

16.
Org Lett ; 25(42): 7683-7688, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37846920

ABSTRACT

Transition-metal-catalyzed directed C-H allylation of arenes offers an efficient and straightforward approach to construct value-added allylic arenes. However, these reactions are often performed with precious transition-metal catalysts and mainly limited to ortho-C-H allylation of arenes. Herein, we disclose a novel iron-catalyzed para-C-H allylation of aniline derivatives with allyl alcohols via a chelation-induced strategy, providing various allylic arenes in good yields with excellent regio- and chemoselectivity. A simple FeCl3·6H2O is employed as a catalyst, serving a dual role in the reaction: (1) coordination with N-arylpicolinamide to alter the electronic property of the aromatic ring and (2) reaction with allyl alcohol to form allyl-Fe species.

17.
Nat Commun ; 14(1): 5518, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37684250

ABSTRACT

The transcription factor TATA-box binding protein (TBP) modulates gene expression in nuclei. This process requires the involvement of nuclear transport receptors, collectively termed karyopherin-ß (Kap-ß) in yeast, and various regulatory factors. In previous studies we showed that Kap114p, a Kap-ß that mediates nuclear import of yeast TBP (yTBP), modulates yTBP-dependent transcription. However, how Kap114p associates with yTBP to exert its multifaceted functions has remained elusive. Here, we employ single-particle cryo-electron microscopy to determine the structure of Kap114p in complex with the core domain of yTBP (yTBPC). Remarkably, Kap114p wraps around the yTBPC N-terminal lobe, revealing a structure resembling transcriptional regulators in complex with TBP, suggesting convergent evolution of the two protein groups for a common function. We further demonstrate that Kap114p sequesters yTBP away from promoters, preventing a collapse of yTBP dynamics required for yeast responses to environmental stress. Hence, we demonstrate that nuclear transport receptors represent critical elements of the transcriptional regulatory network.


Subject(s)
Saccharomyces cerevisiae , Transcription Factors , Active Transport, Cell Nucleus , TATA-Box Binding Protein/genetics , Saccharomyces cerevisiae/genetics , Cryoelectron Microscopy , Transcription Factors/genetics , Receptors, Cytoplasmic and Nuclear/genetics , beta Karyopherins/genetics
18.
Brain Sci ; 13(8)2023 08 04.
Article in English | MEDLINE | ID: mdl-37626522

ABSTRACT

BACKGROUND: Abnormal accumulation of lipids is found in dopamine neurons and resident microglia in the substantia nigra of patients with Parkinson's disease (PD). The accumulation of lipids is an important risk factor for PD. Previous studies have mainly focussed on lipid metabolism in peripheral blood, but little attention has been given to cerebrospinal fluid (CSF). We drew the lipidomic signature in CSF from PD patients and evaluated the role of lipids in CSF as biomarkers for PD diagnosis. METHODS: Based on lipidomic approaches, we investigated and compared lipid metabolism in CSF from PD patients and healthy controls without dyslipidaemia in peripheral blood and explored the relationship of lipids between CSF and serum by Pearson correlation analysis. RESULTS: A total of 231 lipid species were detected and classified into 13 families in the CSF. The lipid families, including phosphatidylcholine (PC), sphingomyelin (SM) and cholesterol ester (CE), had significantly increased expression compared with the control. Hierarchical clustering was performed to distinguish PD patients based on the significantly changed expression of 34 lipid species. Unsupervised and supervised methods were used to refine this classification. A total of 12 lipid species, including 3-hydroxy-dodecanoyl-carnitine, Cer(d18:1/24:1), CE(20:4), CE(22:6), PC(14:0/18:2), PC(O-18:3/20:2), PC(O-20:2/24:3), SM(d18:0/16:0), SM(d18:2/14:0), SM(d18:2/24:1), SM(d18:1/20:1) and SM(d18:1/12:0), were selected to draw the lipidomic signature of PD. Correlation analysis was performed and showed that the CE family and CE (22:6) in CSF had a positive association with total cholesterol in the peripheral blood from PD patients but not from healthy controls. CONCLUSIONS: Our results revealed that the lipidomic signature in CSF may be considered a potential biomarker for PD diagnosis, and increased CE, PC and SM in CSF may reveal pathological changes in PD patients, such as blood-brain barrier leakage.

19.
Nanotechnology ; 34(49)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37643586

ABSTRACT

In recent years, defect engineering has shown great potential to improve the properties of metal oxide nanomaterials for various applications thus received extensive investigations. While traditional techniques mostly focus on controlling the defects during the synthesis of the material, laser irradiation has emerged as a promising post-deposition technique to further modulate the properties of defects yet there is still limited information. In this article, defects such as oxygen vacancies are tailored in ZnO nanorods through nanosecond (ns) laser irradiation. The relation between laser parameters and the temperature rise in the ZnO due to laser heating was established based on the observation in the SEM and the simulation. Raman spectra indicated that the concentration of the oxygen vacancies in the ZnO is temperature-dependent and can be controlled by changing the laser fluence and exposure time. This is also supported by the absorption spectra and the photoluminescence spectra of ZnO NRs irradiated under these conditions. On the other hand, the distribution of the oxygen vacancies was studied by XPS depth profiling, and it was confirmed that the surface-to-bulk ratio of the oxygen vacancies can be modulated by varying the laser fluence and exposure time. Based on these results, four distinctive regimes containing different ratios of surface-to-bulk oxygen vacancies have been identified. Laser-processed ZnO nanorods were also used as the catalyst for the photocatalytic degradation of rhodamine B (RhB) dye to demonstrate the efficacy of this laser engineering technique.

20.
J Orthop Surg Res ; 18(1): 585, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37553573

ABSTRACT

BACKGROUND: Lumbar disc herniation (LDH) is a complex spinal disease, with multiple genetic polymorphisms being related to its risk. Nevertheless, the role of LINC-PINT polymorphisms in LDH risk has remained unknown. Therefore, this study aimed to investigate the association between LINC-PINT polymorphisms and LDH risk. METHODS: DNA was extracted from 504 LDH patients and 500 healthy controls. Three single nucleotide polymorphisms (SNPs) in LINC-PINT were selected and genotyped using Agena MassARRAY. We used logistic regression analysis to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs) under multiple genetic models to evaluate the association between LINC-PINT polymorphisms and LDH risk. Haploview 4.2 and SNPStats software were used to evaluate the linkage strength of SNPs and the correlation between haplotypes and LDH risk. The impact of SNP-SNP interactions on LDH risk was analyzed using multi-factor dimensionality reduction (MDR). RESULTS: Results showed that rs157916 (G vs. A: OR = 1.23, FDR-p = 0.029) and rs7801029 (G vs. C: OR = 1.39, FDR-p = 0.006; GG vs. CC: OR = 2.34, FDR-p = 0.038; recessive: OR = 2.13, FDR-p = 0.045; additive: OR = 1.39, FDR-p = 0.030) were associated with an increased risk of LDH. Furthermore, LINC-PINT rs157916 and rs780129 were found to be significantly associated with LDH risk in males. The "GGG" haplotype was associated with increased LDH risk (OR = 1.41, FDR-p = 0.006). MDR analysis indicated that the interaction between rs7801029 and rs16873842 was associated with an increased risk of LDH (OR = 1.47, p = 0.004). Additionally, there were significant differences in C-reactive protein levels among different genotypes of rs157916 and rs780129 (p < 0.05). CONCLUSION: This study suggests that LINC-PINT gene polymorphisms (rs157916 and rs7801029) are considered risk factors for LDH in the Chinese Han population and provide a scientific basis for early screening, prevention, and diagnosis of LDH.


Subject(s)
Intervertebral Disc Displacement , RNA, Long Noncoding , Humans , Male , Case-Control Studies , China/epidemiology , East Asian People , Gene Frequency , Genetic Predisposition to Disease , Intervertebral Disc Displacement/genetics , Lumbar Vertebrae , Polymorphism, Single Nucleotide , RNA, Long Noncoding/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...