Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(2): 2235-2244, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38297758

ABSTRACT

With wavelength tunability, free-electron lasers (FELs) are well-suited for generating orbital angular momentum (OAM) beams in a wide photon energy range. We report here the first experimental demonstration of OAM beam generation using an oscillator FEL with the tens of picosecond pulse duration. Lasing around 458 nm, we have produced the four lowest orders of superposed Laguerre-Gaussian beams using a very long FEL resonator of 53.73 m. The produced beams have good beam quality, excellent stability, and substantial average power. We have also developed a pulsed operation mode for these beams with a highly reproducible temporal structure for a range of repetition rate of 1-30 Hz. This development can be extended to short wavelengths, for example to x-rays using a future x-ray FEL oscillator. The OAM operation of such a storage-ring FEL also paves the way for the generation of OAM gamma-ray beams via inverse Compton scattering.

2.
Appl Opt ; 60(12): 3344-3352, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33983238

ABSTRACT

Reliable and rapid assessment of the transverse mode quality of a free-space laser beam has a wide range of applications in laser development, research, and utilization. It has become even more important with recent advances in developing orbital angular momentum photon beams across a broad spectral region. In this work, a general modal analysis method for a free-space multimode laser beam has been developed based on Bayesian analysis. After transforming mode decomposition into a linear system problem, a Gaussian probabilistic model is used to find a closed-form solution. The method is found to be robust with the presence of Gaussian noise. Prior knowledge about the mode content can be incorporated into the method to improve the solution for situations when coherent disturbances or contamination are present in the laser beam. This method can be used to analyze the mode content for laser beams in different bases, such as Hermite-Gaussian (HG) modes and Laguerre-Gaussian (LG) modes. Three applications of this method are presented: a detailed modal analysis of the beam image from the incoherent intensity addition of HG modes and two examples of mode decomposition using the complex wavefront from the coherent superposition of HG and LG modes. The feasibility of this method is demonstrated using various simulation results. Based on digital images of a laser beam recorded without complex wavelength-limiting optics, in principle, this method can be used in a wide wavelength range from infrared to ultraviolet, and possibly x ray.

SELECTION OF CITATIONS
SEARCH DETAIL
...