Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 518
Filter
1.
Food Res Int ; 187: 114407, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763661

ABSTRACT

Microalgae protein holds great potential for various applications in the food industry. However, the current knowledge regarding microalgae protein remains limited, with little information available on its functional properties. Furthermore, the relationship between its molecular structure and functional properties is not well defined, which limits its application in food processing. This study aims to addresses these gaps though an analysis of the emulsibility and foamability of various soluble protein isolates from two species of Spirulina (Arthospira platensis and Spirulina platensis), and the functional properties of Spirulina protein isolates in relation to its molecular structure and charge state. Results revealed that the degree of cross-linking and aggregation or folding and curling of protein tertiary structures was higher in the highly soluble Spirulina protein isolates (AP50% and SP50%) than in the low-solubility isolates (AP30% and SP30%). The foaming capacity (FC) of AP50% and SP50% was found to be lower than that of AP30% and SP30%. Spirulina protein isolates can stably adsorb at the air-water interface for at least 20 min and possessed good interfacial activity. A high pH value was found to promote cross-linking of protein particles at the oil-water interface, thereby reinforcing the internal network structure of emulsions and increasing viscosity. These findings provide preliminary insights for potential applications of Spirulina protein isolates in food production, especially towards quality improvement.


Subject(s)
Bacterial Proteins , Emulsions , Solubility , Spirulina , Spirulina/chemistry , Emulsions/chemistry , Bacterial Proteins/chemistry , Emulsifying Agents/chemistry , Food Handling/methods , Molecular Structure , Adsorption
2.
Talanta ; 276: 126257, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38781913

ABSTRACT

Alkyl imidazolium ionic liquids (Cn[MIM]), initially heralded as eco-friendly green solvents for diverse industrial applications, have increasingly been recognized fortheir biodegradability challenges and multiple biotoxicity. Despite potential health risks, research into the effects of Cn[MIM] on human health remains scarce, particularly regarding their detection in biological serum samples. This study validated a matrix-matched calibration quantitative method that utilizes solid-phase extraction (SPE) coupled with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The method was used to analyze the presence of 10 ionic liquids (ILs) with varying alkyl carbon chain lengths (C2-C12) across 300 human serum samples. Efficient separation was achieved using optimized SPE conditions and a BEH C18 column with an appropriate mobile phase. Results demonstrated a strong linear relationship (0.05-100 ng/mL; R2 = 0.995-0.999), with detection and quantification limits with detection and quantification limits ranging from 0.001 to 0.107 ng/mL and 0.003-0.355 ng/mL, respectively. Intraday and inter-day precisions were 0.85-6.99 % and 1.50-7.46 %, with recoveries between 82 and 113 %. The validated method detected C6MIM in 19 % of samples and C8MIM in 8.3 % of samples, with concentrations ranging from 0.02 to 111.70 µg/L and 0.09-16.99 µg/L, respectively, suggesting a potential risk of human exposure. This underscores the importance of robust detection methods in monitoring environmental and human health impacts of alkyl imidazolium compounds.

3.
Chemosphere ; 359: 142321, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38754495

ABSTRACT

Rare earth elements (REEs) are emerging contaminants that are increasingly used in high technology products. However, limited information is available regarding exposure to REEs and associated health effects in neonates. This study aimed to investigate the association between REE concentrations and thyroid hormone levels, as well as birth outcomes in 109 newborns in Beijing, China. We measured the concentrations of 16 REEs and thyroid hormones in umbilical cord serum. To assess the impact of exposure to individual REEs and REE mixtures on thyroid hormone levels and birth outcomes, we employed univariate linear regression, least absolute shrinkage and selection operator (LASSO), and weighted quantile sum (WQS) models. We detected 14 REEs at high rates (92.6%-100%), with yttrium exhibiting the highest median (interquartile range) concentration [43.94 (0.33-172.55) ng/mL], followed by scandium [3.64 (0.46-11.15) ng/mL]. Univariate analyses showed that per logarithmic (ln)-unit change of neodymium (Nd) and samarium (Sm) was associated with 0.039 [95% confidence interval (CI): 0.001, 0.007] and 0.031 (95% CI: 0.003, 0.060) increases in free thyroxine (FT4) levels, respectively. Moreover, 14 REEs exhibited significant associations with triiodothyronine (T3) levels, resulting in increases ranging from 0.066 to 0.307. Elevated concentrations of terbium (Tb) [per ln-unit change: -0.021 (95% CI: -0.041, -0.01)] and lutetium (Lu) [-0.023 (95% CI: -0.043, -0.002)] were inversely correlated with birth length in newborns. A further multiple exposure analysis employing the LASSO model identified Sm, Nd, Y, Sc, and Lu as critical factors influencing FT4 and T3 levels. Additionally, WQS analyses showed positive associations between exposure to a mixture of 14 REEs and FT4 (P = 0.046), T3 (P < 0.001), and birth length (P = 0.049). These findings suggest that in utero exposure to REEs might disrupt thyroid hormone homeostasis and impact intrauterine growth. Further studies are warranted to validate these findings and elucidate the underlying mechanisms.

4.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 61-67, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678626

ABSTRACT

The purpose of this study was to explore the correlations of interleukin-1 (IL-1) and IL-6 gene polymorphisms with hypertrophic cardiomyopathy (HCM). A total of 200 patients with HCM were enrolled as disease group, and 200 healthy individuals were included as control group. Peripheral blood was collected from all subjects in both disease and control groups. Gene polymorphisms and serum expression levels of IL-1 and IL-6 were detected, and conjoint analysis was performed based on results of cardiac color Doppler ultrasound examination. The allele distribution of IL-1 rs1878320 showed a difference between disease and control groups (P=0.000). The frequency of the allele T was lower in disease group. The genotype distribution of IL-1 rs1878320 (P=0.001) and IL-6 rs1474347 (P=0.000) in disease group was different from that in control. The frequency of TC genotype of IL-1 rs1878320 was lower in disease group, and that of CA genotype of IL-6 rs1474347 was higher in disease group. There was a difference in the distribution of the dominant model of IL-6 rs1474347 between disease and control groups (P=0.021), and the frequency of CC + CA in the dominant model was 171 (0.855). The frequency of AC haplotype of IL-1 gene was overtly higher in disease group (P=0.000), while the frequency of AT haplotype was lower in disease group (P=0.000). The IL-1 rs1516792 polymorphism had an association with serum IL-1 level (P<0.05), the IL-1 level was notably increased in the patients with the genotype AA, and it was higher in disease group. The polymorphism of rs1878320 locus in IL-1 gene was correlated with interventricular septal (IVS) (P=0.047), and IVS was reduced in the patients with TC genotype. The polymorphism of rs1516792 locus in IL-1 gene was distinctly related to left ventricular outflow tract (LVOT) (P=0.041), and LVOT was lowered in the patients with GG genotype. The IL-6 rs2069831 polymorphism was associated with left ventricular ejection fraction (LVEF) (P=0.035), and LVEF declined in the patients with TT genotype. The IL-1 and IL-6 gene polymorphisms are correlated with the susceptibility and progression of HCM.


Subject(s)
Cardiomyopathy, Hypertrophic , Interleukin-1 , Interleukin-6 , Polymorphism, Single Nucleotide , Adult , Female , Humans , Male , Middle Aged , Alleles , Cardiomyopathy, Hypertrophic/genetics , Case-Control Studies , Gene Frequency/genetics , Genetic Predisposition to Disease , Genotype , Interleukin-1/blood , Interleukin-1/genetics , Interleukin-6/blood , Interleukin-6/genetics , Polymorphism, Single Nucleotide/genetics
5.
Foods ; 13(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38672926

ABSTRACT

Pentachlorophenol (PCP) is a ubiquitous emerging persistent organic pollutant detected in the environment and foodstuffs. Despite the dietary intake of PCP being performed using surveillance data, the assessment does not consider the bioaccessibility and bioavailability of PCP. Pork, beef, pork liver, chicken and freshwater fish Ctenopharyngodon Idella-fortified by three levels of PCP were processed by RIVM and the Caco-2 cell model after steaming, boiling and pan-frying, and PCP in foods and digestive juices were detected using isotope dilution-UPLC-MS/MS. The culinary treatment and food matrix were significantly influenced (p < 0.05) in terms of the bioaccessibility and bioavailability of PCP. Pan-frying was a significant factor (p < 0.05) influencing the digestion and absorption of PCP in foods, with the following bioaccessibility: pork (81.37-90.36%), beef (72.09-83.63%), pork liver (69.11-78.07%), chicken (63.43-75.52%) and freshwater fish (60.27-72.14%). The bioavailability was as follows: pork (49.39-63.41%), beef (40.32-53.43%), pork liver (33.63-47.11%), chicken (30.63-40.83%) and freshwater fish (17.14-27.09%). Pork and beef with higher fat content were a key factor in facilitating the notable PCP bioaccessibility and bioavailability (p < 0.05). Further, the exposure of PCP to the population was significantly reduced by 42.70-98.46% after the consideration of bioaccessibility and bioavailability, with no potential health risk. It can improve the accuracy of risk assessment for PCP.

6.
Antibiotics (Basel) ; 13(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38666997

ABSTRACT

The primary determinant of human health is undoubtedly safe food [...].

7.
Food Chem ; 450: 139242, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38631208

ABSTRACT

The development of facile, low-cost reliable, and precise onsite assays for the bioactive component hypoxanthine (Hx) in meat products is significant for safeguarding food safety and public health. Herein, we proposed a smartphone-assissted aggregation-induced emission (AIE) fluorogen tetraphenylethene (TPE)-incorporated amorphous Fe-doped phosphotungstates (Fe-Phos@TPE) nanozyme-based ratiometric fluorescence-colorimetric dual-mode biosensor for achieving the onsite visual detection of Hx. When the Hx existed, xanthine oxidase (XOD) catalyzed Hx into H2O2 to be further catalyzed into •OH by the prominent peroxidase activity of Fe-Phos@TPE at pH = 6.5, resulting in the oxidization of nonfluorescent o-phenylenediamine (OPD, naked-eye colorless) to be yellow fluorescent emissive 2,3-diaminophenazine (DAP, naked-eye dark yellow) at 550 nm as well as the intrinsic blue fluorescence of Fe-Phos@TPE at 440 nm to be decreased via inner-filter effect (IFE) action, thereby realizing a multi-enzyme cascade catalytic reaction at near-neutral pH to overcome the traditional acidity dependence-induced time-consuming and low sensitivity troublesome.


Subject(s)
Biosensing Techniques , Hypoxanthine , Meat Products , Biosensing Techniques/instrumentation , Hypoxanthine/analysis , Hypoxanthine/chemistry , Meat Products/analysis , Xanthine Oxidase/chemistry , Xanthine Oxidase/metabolism , Food Contamination/analysis , Animals , Fluorescent Dyes/chemistry , Fluorescence , Smartphone , Colorimetry/methods
9.
Chem Res Toxicol ; 37(4): 528-539, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38507288

ABSTRACT

Quinoxaline 1,4-di-N-Oxides (QdNOs) have been used as synthetic antimicrobial agents in animal husbandry and aquaculture. The metabolism and potential toxicity have been also concerns in recently years. The metabolism investigations showed that there were 8 metabolites of Carbadox (CBX), 34 metabolites of Cyadox (CYA), 33 metabolites of Mequindox (MEQ), 35 metabolites of Olaquindox (OLA), and 56 metabolites of Quinocetone (QCT) in different animals. Among them, Cb3 and Cb8, M6, and O9 are metabolic residual markers of CBX, MEQ and OLA, which are associated with N → O reduction. Toxicity studies revealed that QdNOs exhibited severe tumorigenicity, cytotoxicity, and adrenal toxicity. Metabolic toxicology showed that toxicity of QdNOs metabolites might be related to the N → O group reduction, and some metabolites exhibited higher toxic effects than the precursor, which could provide guidance for further research on the metabolic toxicology of QdNOs and provide a wealth of information for food safety evaluation.


Subject(s)
Oxides , Quinoxalines , Animals , Quinoxalines/toxicity , Quinoxalines/metabolism , Carbadox , Oxidative Stress
10.
Environ Pollut ; 347: 123709, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38447655

ABSTRACT

Aquatic farming is considered as a major source of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) for the natural environment of the lakes. ARB and ARGs in the natural environment have increased quickly because of the human activities. Here, we have profiled the diversity and abundance of ARGs in sediments from the typical aquaculture areas around 15 major lakes in China using PCR and qPCR, and further assessed the risk factor shaping the occurrence and distribution of ARGs. And class 1, 2 and 3 integrons were initially detected by PCR with specific primers. ARGs were widely distributed in the lakes: Weishan Lake and Poyang Lake showed high diversity of ARGs, followed by Dongting Lake, Chao Lake and Tai Lake. Generally, the ARGs in the Middle-Lower Yangtze Plain were more abundant than those in the Qinghai-Tibet Plateau. Tetracycline resistance genes (tet(C), tet(A) & tet(M)) were prominent in sediments, and the next was AmpC ß-lactamase gene group BIL/LAT/CMY, and the last was the genes resistance to aminoglycoside (strA-strB). Partial least squares path modeling analysis (PLS-PMA) revealed that livestock had a significant direct effect on the distribution of ARGs in lakes, and population might indirectly influence the profiles of ARGs by affecting the scale of livestock and aquaculture. The detectable rate of class 1, 2 and 3 integrons were 80%, 100% and 46.67%, respectively. The prevalence of integrons might play a key role in promoting more frequent horizontal gene transfer (HGT) events, resulting in the environmental mobilization and dissemination of ARGs between bacteria.


Subject(s)
Angiotensin Receptor Antagonists , Lakes , Humans , Lakes/microbiology , Angiotensin-Converting Enzyme Inhibitors , Drug Resistance, Microbial/genetics , Genes, Bacterial , Aquaculture , China , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis
11.
Toxics ; 12(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38535947

ABSTRACT

Phthalic acid esters (PAEs), commonly used as plasticizers, are pervasive in the environment, leading to widespread human exposure. The association between phthalate exposure and metabolic disorders has been increasingly recognized, yet the precise biological mechanisms are not well-defined. In this study, we explored the effects of monoethylhexyl phthalate (MEHP) and monocyclohexyl phthalate (MCHP) on glucose and lipid metabolism in human hepatocytes and adipocytes. In hepatocytes, MEHP and MCHP were observed to enhance lipid uptake and accumulation in a dose-responsive manner, along with upregulating genes involved in lipid biosynthesis. Transcriptomic analysis indicated a broader impact of MEHP on hepatic gene expression relative to MCHP, but MCHP particularly promoted the expression of the gluconeogenesis key enzymes G6PC and FBP1. In adipocytes, MEHP and MCHP both increased lipid droplet formation, mimicking the effects of the Peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone (Rosi). Transcriptomic analysis revealed that MEHP predominantly altered fatty acid metabolism pathways in mature adipocytes (MA), whereas MCHP exhibited less impact. Metabolic perturbations from MEHP and MCHP demonstrate shared activation of the PPARs pathway in hepatocytes and adipocytes, but the cell-type discrepancy might be attributed to the differential expression of PPARγ. Our results indicate that MEHP and MCHP disrupt glucose and lipid homeostasis in human liver and adipose through mechanisms that involve the PPAR and adenosine monophosphate-activated protein kinase (AMPK) signaling pathways, highlighting the nuanced cellular responses to these environmental contaminants.

12.
Food Microbiol ; 120: 104475, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38431321

ABSTRACT

Alicyclobacillus acidoterrestris is the major threat to fruit juice for its off-odor producing characteristic. In this study, Pyrococcus furiosus Argonaute (PfAgo), a novel endonuclease with precise DNA cleavage activity, was used for A. acidoterrestrisdetection, termed as PAD. The partially amplified 16 S rRNA gene of A. acidoterrestris can be cleaved by PfAgo activated by a short 5'-phosphorylated single strand DNA, producing a new guide DNA (gDNA). Then, PfAgo was activated by the new gDNA to cut a molecular beacon (MB) with fluorophore-quencher reporter, resulting in the recovery of fluorescence. The fluorescent intensity is positively related with the concentration of A. acidoterrestris. The PAD assay showed excellent specificity and sensitivity as low as 101 CFU/mL, which can be a powerful tool for on-site detection of A. acidoterrestris in fruit juice industry in the future, reducing the economic loss.


Subject(s)
Alicyclobacillus , Pyrococcus furiosus , Fruit and Vegetable Juices , Pyrococcus furiosus/genetics , Alicyclobacillus/genetics , DNA , Fruit
13.
Anal Methods ; 16(10): 1454-1467, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38415741

ABSTRACT

Saccharides are not only the basic constituents and nutrients of living organisms, but also participate in various life activities, and play important roles in cell recognition, immune regulation, development, cancer, etc. The analysis of carbohydrates and glycoconjugates is a necessary means to study their transformations and physiological roles in living organisms. Existing detection techniques can hardly meet the requirements for the analysis of carbohydrates and glycoconjugates in complex matrices as they are expensive, involve complex derivatization, and are time-consuming. Nanopore sensing technology, which is amplification-free and label-free, and is a high-throughput process, provides a new solution for the identification and sequencing of carbohydrates and glycoconjugates. This review highlights recent advances in novel nanopore-based single-molecule sensing technologies for the detection of carbohydrates and glycoconjugates and discusses the advantages and challenges of nanopore sensing technologies. Finally, current issues and future perspectives are discussed with the aim of improving the performance of nanopores in complex media diagnostic applications, as well as providing a new direction for the quantification of glycan chains and the study of glycan chain properties and functions.


Subject(s)
Nanopores , Glycoconjugates , Carbohydrates , Nanotechnology/methods , Polysaccharides
14.
Analyst ; 149(5): 1350-1363, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38312056

ABSTRACT

Single cells and their dynamic behavior are closely related to biological research. Monitoring their dynamic behavior is of great significance for disease prevention. How to achieve rapid and non-destructive monitoring of single cells is a major issue that needs to be solved urgently. As an emerging technology, nanopores have been proven to enable non-destructive and label-free detection of single cells. The structural properties of nanopores enable a high degree of sensitivity and accuracy during analysis. In this article, we summarize and classify the different types of solid-state nanopores that can be used for single-cell detection and illustrate their specific applications depending on the size of the analyte. In addition, their research progress in material transport and microenvironment monitoring is also highlighted. Finally, a brief summary of existing research challenges and future trends in nanopore single-cell analysis is tentatively provided.


Subject(s)
Nanopores , Nanotechnology/methods
15.
J Agric Food Chem ; 72(2): 1354-1360, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38174972

ABSTRACT

Pyrococcus furiosusArgonaute (PfAgo) emerged as a novel endonuclease for the nucleic acid test recently. However, the input of exogenous guide DNA (gDNA) to activate PfAgo has reduced its flexibility. In this work, an enzyme-assisted endogenous gDNA generation-mediated PfAgo for the target detection strategy, termed EGG-PAD, was proposed. With the aid of EcoR Ι, the target double-strand DNA was cut, producing a phosphate group at the 5' end, functioning as gDNA to activate PfAgo for nucleic acid detection. The applicability of this assay was tested in the detection ofAlicyclobacillus acidoterrestris, a bacterium causing the spoilage of fruit juice, showing excellent sensitivity and specificity, ascribed to the "duplex amplification and triple insurance" mechanism. Moreover, EGG-PAD exhibited superior versatility in the identification of common foodborne pathogens. This powerful platform could also be an on-site test tool for detecting nucleic acid-containing organisms such as tumor cell, pathogen, and virus in the future.


Subject(s)
Alicyclobacillus , Pyrococcus furiosus , Pyrococcus furiosus/genetics , DNA , Fruit and Vegetable Juices , Alicyclobacillus/genetics
16.
J Hazard Mater ; 465: 133468, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38219584

ABSTRACT

Microporous organic networks (MONs) are highly porous materials that are particularly useful in analytical chemistry. However, the use of these materials is often limited by the functional groups available on their surface. Here, we described the polymerization of a sea urchin-like structure material at ambient temperature, that was functionalized with hydroxyl, carboxyl, and triazine groups and denoted as OH-COOH-MON-TEPT. A substantial proportion of OH-COOH-MON-TEPT was intricately decorated EDA-Fe3O4, creating a well-designed configuration (EDA-Fe3O4 @OH-COOH-MON-TEPT-EDC) for superior adsorption of the target analytes phenylurea herbicides (PUHs) via magnetic solid-phase extraction (MSPE). The proposed method showed remarkably low limits of detection ranging from 0.03 to 0.22 ng·L-1. Experimental investigations and theoretical analyses unveiled the adsorption mode between EDA-Fe3O4 @OH-COOH-MON-TEPT-EDC and PUHs. These findings establish a robust foundation for potential applications of EDA-Fe3O4 @OH-COOH-MON-TEPT-EDC in the analysis of various polar contaminants.

17.
Biol Trace Elem Res ; 202(1): 332-345, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37086355

ABSTRACT

Red swamp crayfish (Procambarus clarkia) is an exposed species to heavy metals due to their lifestyle of direct contact with sediments. Based on the complete crayfish industry, we focus on the presence of heavy metals in crayfish from different circulation links, which provides a new idea for the investigation of heavy metals in food. To analyze the exposure levels of heavy metals in crayfish during aquaculture and circulation, the five elements (Cd, Pb, Hg, Cr, Cu) in crayfish from 126 sampling sites were investigated. Cultured environmental samples were collected for Spearman correlation analysis. Monte Carlo simulation was used to analyze the uncertain health risks of heavy metals in crayfish. The results indicated that the average heavy metal concentrations in crayfish were all below the limit threshold values. The hepatopancreas was the main target organ for heavy metal accumulation (Cd: 0.3132 mg/kg; Pb: 0.0258 mg/kg; Hg: 0.0072 mg/kg; Cr: 0.1720 mg/kg; Cu: 10.6816 mg/kg). The positive correlation of heavy metal content between crayfish and sediments was not significant under the crayfish-rice coculture model. The 95th HI values for adults and children ranged from 0.022 to 0.042 and 0.071 to 0.137, well below 1, indicating that heavy metals do not pose a noncarcinogenic risk to humans. The potential carcinogenic risk of Cd and Cr in crayfish should be taken seriously, as the 95th CR values for children have reached 4.299 × 10-5 and 6.509 × 10-5, respectively.


Subject(s)
Mercury , Metals, Heavy , Water Pollutants, Chemical , Child , Adult , Animals , Humans , Astacoidea , Rivers , Cadmium/analysis , Lead/analysis , Environmental Monitoring , Metals, Heavy/analysis , Seafood/analysis , Mercury/analysis , Risk Assessment , China , Water Pollutants, Chemical/analysis
18.
J Agric Food Chem ; 72(1): 773-782, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38109498

ABSTRACT

Infant formula is intended as an effective substitute for breast milk but is the main source of polychlorinated naphthalenes (PCNs) to nonbreastfed infants. We performed target and nontarget analyses to determine PCNs and identify other organic contaminants in infant formula. The mean PCN concentrations in infant formula, milk powder, and bovine milk were 106.1, 88.8, and 78.2 µg kg-1 of dry weight, respectively. The PCN congener profiles indicated that thermal processes and raw materials were probably the main sources of PCNs in infant formula. A health risk assessment indicated that PCNs in infant formula do not pose health risks to infants. Using gas chromatography-Orbitrap mass spectrometry, 352, 372, and 161 organic chemicals were identified in the infant formula, milk powder, and bovine milk samples, respectively. Phthalate esters were detected in all four plastic-packed milk powder samples. The results indicated milk becomes more contaminated with organic chemicals during manufacturing, processing, and packaging.


Subject(s)
Infant Formula , Naphthalenes , Infant , Humans , Powders , Naphthalenes/analysis , Infant Formula/analysis , Gas Chromatography-Mass Spectrometry , Milk, Human/chemistry , Environmental Monitoring
19.
Anal Methods ; 16(2): 276-283, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38113035

ABSTRACT

A rapid fluorescence detection method was established for 3-monochloropropane-1,2-diol (3-MCPD). The detection system works based on the fluorescence quenching of pyrocatechol-polyethyleneimine (PCh-PEI) polymer by 3-MCPD. The fluorescence quenching ability of 3-MCPD for PCh-PEI polymer was measured at different pH and temperatures. Indeed, in the presence of 3-MCPD, the fluorescence intensity of PCh-PEI polymer solution was quenched best at 100 °C and pH 8.5. Also, the effect of different concentrations of 3-MCPD on the optical properties of the PCh-PEI polymer was examined. Under optimal experimental conditions, fluorescence detection was linear in a range of 0.08-2.0 mg per L 3-MCPD, with a calculated detection limit of 0.06 mg L-1 and a correlation coefficient of 0.9974. Concisely, the reported method has good sensitivity and can be used for the rapid detection of 3-MCPD contamination in food products.


Subject(s)
alpha-Chlorohydrin , alpha-Chlorohydrin/analysis , Polyethyleneimine , Fluorescence , Food Contamination/analysis
20.
Front Toxicol ; 5: 1292373, 2023.
Article in English | MEDLINE | ID: mdl-38046399

ABSTRACT

Novel techniques and methodologies are being developed to advance food safety risk assessment into the next-generation. Considering the shortcomings of traditional animal testing, new approach methodologies (NAMs) will be the main tools for the next-generation risk assessment (NGRA), using non-animal methodologies such as in vitro and in silico approaches. The United States Environmental Protection Agency and the European Food Safety Authority have established work plans to encourage the development and application of NAMs in NGRA. Currently, NAMs are more commonly used in research than in regulatory risk assessment. China is also developing NAMs for NGRA but without a comprehensive review of the current work. This review summarizes major NAM-related research articles from China and highlights the China National Center for Food Safety Risk Assessment (CFSA) as the primary institution leading the implementation of NAMs in NGRA in China. The projects of CFSA on NAMs such as the Food Toxicology Program and the strategies for implementing NAMs in NGRA are outlined. Key issues and recommendations, such as discipline development and team building, are also presented to promote NAMs development in China and worldwide.

SELECTION OF CITATIONS
SEARCH DETAIL
...