Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Phys Chem Chem Phys ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828761

ABSTRACT

Sulfur compounds (SO2, CS2, H2S and OCS) are common toxic pollutants in the atmospheric environment, and the absorption spectroscopy technique can indeed help to realize online monitoring of their concentrations. However, nonlinear effects that occur during absorption spectroscopy measurements have a serious impact on the measurement of the absorption cross-sections (ACSs) of sulfur compounds, leading to serious deviations in both the substance absorption properties and concentrations obtained based on ACS analysis. In this paper, the maximum effective ACSs of sulfur compounds in the linear region are obtained by considering the influence of nonlinear effects and eliminating interference factors such as oxygen and photolysis. In addition, the nonlinear effects are found to be greatly attenuated in spectra with broad band absorption characteristics by comparing the oscillatory absorption spectra before and after the differential treatment and by comparing the change in the oscillatory ACS with the broad band ACS. The experimental results show that the effective ACSs of SO2, CS2, H2S, and OCS with a resolution of 0.23 nm are 14.15 × 10-18 cm2 per molecule, 5.61 × 10-16 cm2 per molecule, 7.09 × 10-18 cm2 per molecule, and 3.20 × 10-19 cm2 per molecule, respectively. So far, it is the largest ACS obtained at room temperature and atmospheric pressure, which is of great significance for online measurement of sulfur compounds.

2.
J Ovarian Res ; 17(1): 107, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762721

ABSTRACT

Abnormal granulosa cell (GC) death contributes to cyclophosphamide (CTX) induced primary ovarian insufficiency (POI). To investigate the contribution of GCs to POI, gene profiles of GCs exposed to CTX were assessed using RNA-Seq and bioinformatics analysis. The results showed the differentially expressed genes (DEGs) were enriched in the ferroptosis-related pathway, which is correlated with upregulated heme oxygenase 1 (HO-1) and downregulated glutathione peroxidase-4 (GPX4). Using CTX-induced cell culture (COV434 and KGN cells), the levels of iron, reactive oxygen species (ROS), lipid peroxide, mitochondrial superoxide, mitochondrial morphology and mitochondrial membrane potential (MMP) were detected by DCFDA, MitoSOX, C11-BODIPY, MitoTracker, Nonylacridine Orange (NAO), JC-1 and transmission electron microscopy respectively. The results showed iron overload and disrupted ROS, including cytoROS, mtROS and lipROS homeostasis, were associated with upregulation of HO-1 and could induce ferroptosis via mitochondrial dysfunction in CTX-induced GCs. Moreover, HO-1 inhibition could suppress ferroptosis induced GPX4 depletion. This implies a role for ROS in CTX-induced ferroptosis and highlights the effect of HO-1 modulators in improving CTX-induced ovarian damage, which may provide a theoretical basis for preventing or restoring GC and ovarian function in patients with POI.


Subject(s)
Cyclophosphamide , Ferroptosis , Granulosa Cells , Heme Oxygenase-1 , Mitochondria , Reactive Oxygen Species , Ferroptosis/drug effects , Female , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Cyclophosphamide/pharmacology , Cyclophosphamide/adverse effects , Reactive Oxygen Species/metabolism , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Membrane Potential, Mitochondrial/drug effects
3.
Appl Microbiol Biotechnol ; 108(1): 333, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739270

ABSTRACT

Currently, there are many different therapies available for inflammatory bowel disease (IBD), including engineered live bacterial therapeutics. However, most of these studies focus on producing a single therapeutic drug using individual bacteria, which may cause inefficacy. The use of dual drugs can enhance therapeutic effects. However, expressing multiple therapeutic drugs in one bacterial chassis increases the burden on the bacterium and hinders good secretion and expression. Therefore, a dual-bacterial, dual-drug expression system allows for the introduction of two probiotic chassis and enhances both therapeutic and probiotic effects. In this study, we constructed a dual bacterial system to simultaneously neutralize pro-inflammatory factors and enhance the anti-inflammatory pathway. These bacteria for therapy consist of Escherichia coli Nissle 1917 that expressed and secreted anti-TNF-α nanobody and IL-10, respectively. The oral administration of genetically engineered bacteria led to a decrease in inflammatory cell infiltration in colon and a reduction in the levels of pro-inflammatory cytokines. Additionally, the administration of engineered bacteria did not markedly aggravate gut fibrosis and had a moderating effect on intestinal microbes. This system proposes a dual-engineered bacterial drug combination treatment therapy for inflammatory bowel disease, which provides a new approach to intervene and treat IBD. KEY POINTS: • The paper discusses the effects of using dual engineered bacteria on IBD • Prospects of engineered bacteria in the clinical treatment of IBD.


Subject(s)
Escherichia coli , Inflammatory Bowel Diseases , Interleukin-10 , Probiotics , Animals , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/therapy , Inflammatory Bowel Diseases/drug therapy , Mice , Escherichia coli/genetics , Probiotics/administration & dosage , Interleukin-10/genetics , Tumor Necrosis Factor-alpha/metabolism , Disease Models, Animal , Genetic Engineering , Gastrointestinal Microbiome , Mice, Inbred C57BL , Colon/microbiology , Colon/pathology , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology
4.
Anal Chem ; 96(21): 8696-8704, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38751030

ABSTRACT

Carbonyl sulfide (OCS) is a toxic gas produced during industrial processes that poses risks to both human health and industrial equipment. Therefore, detecting OCS concentrations plays a crucial role in early hazard warning. This paper presents an online system for detecting OCS at the ppb level using thermal conversion and spectral reconstruction filtering differential optical absorption spectroscopy (SRF-DOAS). First, OCS, which is not suitable for DOAS due to its weak absorption characteristics, is completely transformed into SO2 with strong absorption characteristics under high-temperature conditions. Then, the spectral reconstruction filtering method (SRF) is proposed to eliminate the noise and interference. The core idea of the method is to arrange the spectrum according to the spectral intensity from small to large rather than wavelength, reconstructing the spectrum into a new spectrum with linear characteristics. The reconstructed spectrum can remove noise and interference by linear fitting and retain the characteristic of SO2 oscillation absorption. Next, we demonstrate the ability of the reconstructed spectral method to remove noise and interference by comparing the spectra of the inverse-reconstructed gas mixture and SO2. The relative deviation of 0.88% at 100 ppb and detection limit of 7.26 ppb*m for OCS were obtained using the SRF-DOAS method. Finally, the reliability of the system was confirmed by measurements of OCS concentrations in mixture gas of OCS and air, as well as in human exhaled breath.

5.
Plant Cell ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38581433

ABSTRACT

The style and stigma at the apical gynoecium are crucial for flowering plant reproduction. However, the mechanisms underlying specification of the apical gynoecium remain unclear. Here, we demonstrate that Class II TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) transcription factors are critical for apical gynoecium specification in Arabidopsis (Arabidopsis thaliana). The septuple tcp2 tcp3 tcp4 tcp5 tcp10 tcp13 tcp17 (tcpSEP) and duodecuple tcp2 tcp3 tcp4 tcp5 tcp10 tcp13 tcp17 tcp24 tcp1 tcp12 tcp18 tcp16 (tcpDUO) mutants produce narrower and longer styles, while disruption of TCPs and CRABS CLAW (CRC) or NGATHAs (NGAs) in tcpDUO crc or tcpDUO nga1 nga2 nga4 causes the apical gynoecium to be replaced by lamellar structures with indeterminate growth. TCPs are predominantly expressed in the apex of the gynoecium. TCP4 interacts with CRC to synergistically up-regulate the expression level of NGAs, and NGAs further form high-order complexes to control the expression of auxin-related genes in the apical gynoecium by directly interacting with TCP4. Our findings demonstrate that TCP4 physically associates with CRC and NGAs to control auxin biosynthesis in forming fine structures of the apical gynoecium.

6.
Acta Biomater ; 179: 61-82, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38579919

ABSTRACT

In the field of tissue engineering, local hypoxia in large-cell structures (larger than 1 mm3) poses a significant challenge. Oxygen-releasing biomaterials supply an innovative solution through oxygen ⁠ delivery in a sustained and controlled manner. Compared to traditional methods such as emulsion, sonication, and agitation, microfluidic technology offers distinct benefits for oxygen-releasing material production, including controllability, flexibility, and applicability. It holds enormous potential in the production of smart oxygen-releasing materials. This review comprehensively covers the fabrication and application of microfluidic-enabled oxygen-releasing biomaterials. To begin with, the physical mechanism of various microfluidic technologies and their differences in oxygen carrier preparation are explained. Then, the distinctions among diverse oxygen-releasing components in regards for oxygen-releasing mechanism, oxygen-carrying capacity, and duration of oxygen release are presented. Finally, the present obstacles and anticipated development trends are examined together with the application outcomes of oxygen-releasing biomaterials based on microfluidic technology in the biomedical area. STATEMENT OF SIGNIFICANCE: Oxygen is essential for sustaining life, and hypoxia (a condition of low oxygen) is a significant challenge in various diseases. Microfluidic-based oxygen-releasing biomaterials offer precise control and outstanding performance, providing unique advantages over traditional approaches for tissue engineering. However, comprehensive reviews on this topic are currently lacking. In this review, we provide a comprehensive analysis of various microfluidic technologies and their applications for developing oxygen-releasing biomaterials. We compare the characteristics of organic and inorganic oxygen-releasing biomaterials and highlight the latest advancements in microfluidic-enabled oxygen-releasing biomaterials for tissue engineering, wound healing, and drug delivery. This review may hold the potential to make a significant contribution to the field, with a profound impact on the scientific community.


Subject(s)
Biocompatible Materials , Oxygen , Tissue Engineering , Oxygen/chemistry , Humans , Biocompatible Materials/chemistry , Tissue Engineering/methods , Animals , Microfluidics/methods
7.
ACS Sens ; 9(3): 1499-1507, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38382078

ABSTRACT

The concentration of fractional exhaled nitric oxide (FeNO) is closely related to human respiratory inflammation, and the detection of its concentration plays a key role in aiding diagnosing inflammatory airway diseases. In this paper, we report a gas sensor system based on a distributed parallel self-regulating neural network (DPSRNN) model combined with ultraviolet differential optical absorption spectroscopy for detecting ppb-level FeNO concentrations. The noise signals in the spectrum are eliminated by discrete wavelet transform. The DPSRNN model is then built based on the separated multipeak characteristic absorption structure of the UV absorption spectrum of NO. Furthermore, a distributed parallel network structure is built based on each absorption feature region, which is given self-regulating weights and finally trained by a unified model structure. The final self-regulating weights obtained by the model indicate that each absorption feature region contributes a different weight to the concentration prediction. Compared with the regular convolutional neural network model structure, the proposed model has better performance by considering the effect of separated characteristic absorptions in the spectrum on the concentration and breaking the habit of bringing the spectrum as a whole into the model training in previous related studies. Lab-based results show that the sensor system can stably achieve high-precision detection of NO (2.59-750.66 ppb) with a mean absolute error of 0.17 ppb and a measurement accuracy of 0.84%, which is the best result to date. More interestingly, the proposed sensor system is capable of achieving high-precision online detection of FeNO, as confirmed by the exhaled breath analysis.


Subject(s)
Asthma , Nitric Oxide , Humans , Nitric Oxide/analysis , Asthma/diagnosis , Breath Tests/methods , Exhalation , Inflammation
8.
Opt Lett ; 48(22): 5923-5926, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37966753

ABSTRACT

In this study, we determine the relationship between the broadband absorption spectroscopy and temperature using Doppler broadening combined with a multilinear shape superposition. First, a method for temperature effects on broadband absorption spectroscopy is proposed, utilizing the principle of a multiple Gaussian line shape superposition. A theoretical expression of the temperature effect on broadband spectroscopy is then presented for the first time to the best of our knowledge, and the variation law of broadband absorption spectroscopy with temperature is explained. Furthermore, the effectiveness of the expression is demonstrated by comparing experimental and theoretical data of the SO2 broadband absorption spectroscopy. The results demonstrate that the correlation coefficient (r) between the experimental and theoretical spectra of SO2 within the temperature range of 298.15-923.15 K is greater than 0.93. The method and expression presented in this Letter can effectively explain the data of previous research.

9.
Med Oncol ; 40(10): 290, 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37658961

ABSTRACT

Chemo-resistance has been identified as a crucial factor contributing to tumor recurrence and a leading cause of worse prognosis in patients with ESCC. Therefore, unravel the critical regulators and effective strategies to overcome drug resistance will have a significant clinical impact on the disease. In our study we found that RNF149 was upregulated in ESCC and high RNF149 expression was associated with poor prognosis with ESCC patients. Functionally, we have demonstrated that overexpression of RNF149 confers CDDP resistance to ESCC; however, inhibition of RNF149 reversed this phenomenon both in vitro and in vivo. Mechanistically, we demonstrated that RNF149 interacts with PH domain and leucine rich repeat protein phosphatase 2 (PHLPP2) and induces E3 ligase-dependent protein degradation of PHLPP2, substantially activating the PI3K/AKT signalling pathway in ESCC. Additionally, we found that inhibition of PI3K/AKT signalling pathway by AKT siRNA or small molecule inhibitor significantly suppressed RNF149-induced CDDP resistance. Importantly, RNF149 locus was also found to be amplified not only in ESCC but also in various human cancer types. Our data suggest that RNF149 might function as an oncogenic gene. Targeting the RNF149/PHLPP2/PI3K/Akt axis may be a promising prognostic factor and valuable therapeutic target for malignant tumours.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/genetics , Cisplatin/pharmacology , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Neoplasm Recurrence, Local , Protein Phosphatase 2 , Phosphoprotein Phosphatases/genetics
10.
Am J Pathol ; 193(5): 608-623, 2023 05.
Article in English | MEDLINE | ID: mdl-36804378

ABSTRACT

Breast cancer is a common indication for ovarian cryopreservation. However, whether the grafting ovarian tissue meets functional requirements, as well as the need for additional interventions, remains unclear. The current study demonstrates abnormal serum hormones in breast cancer in humans and breast cancer cell line-derived tumor-bearing mice, and for the first time shows tumor-induced loss of primordial and growing follicles, and the number of follicles being lost to either growth or atresia. A gene signature of tumor-bearing mice demonstrates the disturbed regulatory network of steroidogenesis, which links to mitochondria dysfunction in oocytes and granulosa cells via the phosphatidylinositol 3-kinase signaling pathway. Notably, increased reactive oxygen species were identified in serum and ovarian tissues in tumor-bearing mice. Furthermore, supplementation with vitamin C promoted follicular quiescence, repairing tumor-induced follicle loss via inactivation of the phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin pathway, indicating the potential of antioxidants as a fertility therapy to achieve higher numbers of healthy follicles ready for ovarian cryopreservation.


Subject(s)
Breast Neoplasms , Female , Humans , Animals , Mice , Breast Neoplasms/metabolism , Ovarian Follicle/metabolism , Oocytes/metabolism , Oxidative Stress , Phosphatidylinositol 3-Kinases/metabolism , Mammals/metabolism
11.
Cell Death Dis ; 13(8): 727, 2022 08 20.
Article in English | MEDLINE | ID: mdl-35987690

ABSTRACT

Angiogenesis is considered as an important process in tumor growth, metastasis of hepatocellular carcinoma (HCC) and associated with cancer progression, suggesting that an important research and development field of clinical molecular targeted drugs for HCC. However, the molecular mechanisms underlying tumor angiogenesis in HCC remains elusive. In the current study, we demonstrate that upregulation of AMYB proto-oncogene-like 1 (MYBL1) was associated with high endothelial vessel (EV) density and contributed to poor prognosis of HCC patient. Functionally, MYBL1 overexpressing enhanced the capacity of HCC cells to induce tube formation, migration of HUVECs, neovascularization in CAMs, finally, enhanced HCC cells metastasis, while silencing MYBL1 had the converse effect. Furthermore, HCC cells with high MYBL1 expression were more resistance to sorafenib treatment. We observed that CD31 staining was significantly increased in tumors formed by MYBL1-overexpressing cells but decreased in MYBL1-silenced tumors. Mechanistically, MYBL1 binds to the ANGPT2 promoter and transcriptionally upregulate ANGPT2 mRNA expression. Strikingly, treatment with monoclonal antibody against ANGPT2 significantly inhibited the growth of MYBL1-overexpressing tumors and efficiently impaired angiogenesis. Furthermore, the histone post-translational factors: protein arginine methyltransferase 5 (PRMT5), MEP50, and WDR5 were required for MYBL1-mediated ANGPT2 upregulation. Importantly, we confirmed the correlation between MYBL1 and ANGPT2 expression in a large cohort of clinical HCC samples and several published datasets in pancreatic cancer, esophageal carcinoma, stomach adenocarcinoma, and colon cancer. Our results demonstrate that MYBL1 upregulated the ANGPT2 expression, then induced angiogenesis and confer sorafenib resistance to HCC cells, and MYBL1 may represent a novel prognostic biomarker and therapeutic target for patients with HCC.


Subject(s)
Angiopoietin-2 , Carcinoma, Hepatocellular , Drug Resistance, Neoplasm , Liver Neoplasms , Proto-Oncogene Proteins , Trans-Activators , Adaptor Proteins, Signal Transducing/metabolism , Angiopoietin-2/genetics , Angiopoietin-2/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Protein-Arginine N-Methyltransferases/metabolism , Proto-Oncogene Proteins/metabolism , Sorafenib/pharmacology , Sorafenib/therapeutic use , Trans-Activators/metabolism , Transcriptional Activation
12.
Sci Rep ; 12(1): 12302, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35853978

ABSTRACT

Endometrial epithelial cells carry distinct cancer-associated alterations that may be more susceptible to endometriosis. Mouse models have shown that overexpression of SIRT1 associated with oncogene activation contributes to the pathogenesis of endometriosis, but the underlying reason remains elusive. Here, we used integrated systems biology analysis and found that enrichment of endometrial stromal fibroblasts in endometriosis and their cellular abundance correlated negatively with epithelial cells in clinical specimens. Furthermore, endometrial epithelial cells were characterized by significant overexpression of SIRT1, which is involved in triggering the EMT switch by escaping damage or oncogene-induced induced senescence in clinical specimens and in vitro human cell line models. This observation supports that genetic and epigenetic incident favors endometrial epithelia cells escape from senescence and fuel EMT process in endometriosis, what could be overcome by downregulation of SIRT1.


Subject(s)
Endometriosis , Sirtuin 1 , Animals , Endometriosis/metabolism , Endometrium/metabolism , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Mice , Sirtuin 1/genetics , Sirtuin 1/metabolism , Up-Regulation
13.
Placenta ; 122: 56-65, 2022 05.
Article in English | MEDLINE | ID: mdl-35460951

ABSTRACT

INTRODUCTION: Premature placental aging is implicated in a number of complications of pregnancy including preeclampsia. A placenta knockout mouse model has shown a relationship between SIRT1, aging and placental dysfunction. The role of SIRT1 in cellular senescence has been extensively studied in various cell types, but its role in trophoblast senescence is almost unknown. METHODS: Human placental samples were obtained from preeclampsia-affected women and healthy controls. The placental aging profiles were assessed by Doppler ultrasound, placental histopathology, and evaluation of senescence- and ECM-related markers. The SIRT1 expression pattern relevant to placental aging profiles was studied in premature aging placenta with preeclampsia (32-37 weeks gestation, n = 10) and healthy controls (37-40 weeks gestation, n = 10). Using cell culture, the effects of activation and knockdown of SIRT1 or its downstream target molecules in syncytialized BeWo cells were evaluated. RESULTS: SIRT1 was expressed by syncytiotrophoblast across normal gestation. In preeclamptic premature aging placentas, SIRT1 was significantly downregulated, while senescence- and extracellular matrix (ECM) -related protein levels were upregulated compared to controls. Immunohistochemistry showed these changes to be confined to syncytiotrophoblast. In vitro, SIRT1 activation in response to resveratrol (RSV) abrogated senescence in forskolin-induced syncytialization of BeWo cells via regulation of senescence- and ECM-related proteins, and filamentous actin (F-actin). These effects were restored by SIRT1 siRNA. DISCUSSION: The downregulation of SIRT1 may accelerate senescence of syncytiotrophoblast via targets contributing to regulation of the cell cycle, ECM production and cytoskeleton reorganization leading to premature placental aging observed in preeclampsia.


Subject(s)
Aging, Premature , Pre-Eclampsia , Aging, Premature/metabolism , Animals , Cellular Senescence , Female , Humans , Mice , Placenta/metabolism , Pre-Eclampsia/metabolism , Pregnancy , Sirtuin 1/metabolism , Trophoblasts/metabolism
14.
Cell Death Discov ; 8(1): 191, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35411030

ABSTRACT

Inflammation is a defense mechanism that can protect the host against microbe invasion. A proper inflammatory response can maintain homeostasis, but continuous inflammation can cause many chronic inflammatory diseases. To properly treat inflammatory disorders, the molecular mechanisms underlying the development of inflammation need to be fully elucidated. Pyroptosis is an inflammation-related cell death program, that is different from other types of cell death. Pyroptosis plays crucial roles in host defense against infections through the release of proinflammatory cytokines and cell lysis. Accumulating evidence indicates that pyroptosis is associated with inflammatory diseases, such as arthritis, pneumonia, and colonitis. Furthermore, pyroptosis is also closely involved in cancers that develop as a result of inflammation, such as liver cancer, esophageal cancer, pancreatic cancer, and colon cancer. Here, we review the function and mechanism of pyroptosis in inflammatory disease development and provide a comprehensive description of the potential role of pyroptosis in inflammatory diseases.

15.
Front Oncol ; 11: 759842, 2021.
Article in English | MEDLINE | ID: mdl-34956880

ABSTRACT

Accumulating evidence demonstrates that dysregulation of ubiquitin-mediated degradation of oncogene or suppressors plays an important role in several diseases. However, the function and molecular mechanisms of ubiquitin ligases underlying hepatocellular carcinoma (HCC) remain elusive. In the current study, we show that overexpression of TRIM54 was associated with HCC progression. TRIM54 overexpression facilitates proliferation and lung metastasis; however, inhibition of TRIM54 significantly suppressed HCC progression both in vitro and in vivo. Mechanically, we demonstrated that TRIM54 directly interacts with Axis inhibition proteins 1 (Axin1) and induces E3 ligase-dependent proteasomal turnover of Axin1 and substantially induces sustained activation of wnt/ß-catenin in HCC cell lines. Furthermore, we showed that inhibition of the wnt/ß-catenin signaling pathway via small molecule inhibitors significantly suppressed TRIM54-induced proliferation. Our data suggest that TRIM54 might function as an oncogenic gene and targeting the TRIM54/Axin1/ß-catenin axis signaling may be a promising prognostic factor and a valuable therapeutic target for HCC.

16.
J Med Chem ; 64(6): 3234-3248, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33705128

ABSTRACT

A series of conformationally constrained novel benzo[1,3]oxazinyloxazolidinones were designed, synthesized, and evaluated on their activities against Mycobacterium tuberculosis, Gram-positive bacteria, and Gram-negative bacteria. The studies identified a new compound 20aa that displayed good to excellent antibacterial and antitubercular profiles against drug-resistant TB strains (MIC = 0.48-0.82 µg/mL), MRSA (MIC = 0.25-0.5 µg/mL), MRSE (MIC = 1 µg/mL), VISA (MIC = 0.25 µg/mL), and VRE (MIC = 0.25 µg/mL) and some linezolid-resistant strains (MIC 1-2 µg/mL). Compound 20aa was demonstrated as a promising candidate through ADME/T evaluation including microsomal stability, cytotoxicity, and inhibition of hERG and monoamine oxidase. Notably, 20aa showed excellent mouse PK profile with high plasma exposure (AUC0-∞ = 78 669 h·ng/mL), high peak plasma concentration (Cmax = 10 253 ng/mL), appropriate half-life of 3.76 h, and superior oral bioavailability (128%). The present study not only successfully provides a novel benzo[1,3]oxazinyloxazolidinone scaffold with superior druggability but also lays a good foundation for new antibacterial drug development.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Oxazolidinones/chemistry , Oxazolidinones/pharmacology , Animals , Anti-Bacterial Agents/pharmacokinetics , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Drug Resistance, Bacterial , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Mice , Microsomes, Liver/metabolism , Mycobacterium tuberculosis/drug effects , Oxazolidinones/pharmacokinetics
17.
Placenta ; 103: 1-9, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33068960

ABSTRACT

INTRODUCTION: Knockout mouse model has shown a relationship between Slit2/Robo1 signalling and altered fertility. Altered expression by endometrial epithelium and trophoblast and is associated with the pathogenesis of pregnancy complications but few studies have investigated the expression of decidual Slit2 in miscarriage. METHODS: Expression profiles of Slit2 and Robo1 were measured in human endometrial tissues during the menstrual cycle phases (n = 30), in decidua tissues from recurrent miscarriage (n = 20) and healthy control (n = 20) at 6-8 weeks of gestation. The hormonal regulation of Slit2/Robo1 expression and the role of Slit2/Robo1 signalling in decidualization was investigated in vitro, along with its effects on ß-catenin and MET expression. RESULTS: In human endometrium, Slit2 and Robo1 protein expression in stromal cells were decreased between the late-proliferative and early-secretory phase. In recurrent miscarriage patients, decidual expression Slit2 was increased and associated with lower expression of E-cadherin and higher level vimentin compared to controls. In vitro, the expression of Slit2 was downregulated by cAMP and progesterone in hESCs. Upregulation of Slit2 resulted in inhibition of cell decidualization and ß-catenin translocation to nucleus. DISCUSSION: This study indicates a functional role for Slit2 in endometrial stromal cell decidualization and the pathogenesis of recurrent miscarriage. Aberrant Increase in Slit2 expression may impairs decidualization of endometrial stromal cells leading to recurrent in recurrent miscarriage.


Subject(s)
Abortion, Habitual/genetics , Embryo Implantation/genetics , Intercellular Signaling Peptides and Proteins/physiology , Nerve Tissue Proteins/physiology , Abortion, Habitual/pathology , Abortion, Habitual/physiopathology , Adult , Case-Control Studies , Cells, Cultured , Cohort Studies , Decidua/metabolism , Decidua/pathology , Endometrium/metabolism , Endometrium/pathology , Female , Humans , Intercellular Signaling Peptides and Proteins/genetics , Nerve Tissue Proteins/genetics , Pregnancy , Stromal Cells/physiology , Trophoblasts/metabolism , Trophoblasts/pathology , Up-Regulation/genetics
18.
Beilstein J Org Chem ; 15: 703-709, 2019.
Article in English | MEDLINE | ID: mdl-30992717

ABSTRACT

A highly efficient and convenient protocol was developed to access 2-amino-4H-benzothiopyran-4-ones through a process of conjugated addition-elimination. The sulfinyl group was proved to be the optimum leaving group by thorough investigations on the elimination of sulfide, sulfinyl, and sulfonyl groups at the 2-position of benzothiopyranone. Most 2-aminobenzothiopyranones were obtained in good to excellent yields under refluxing in isopropanol within 36 h. This method is base-free and the substrate scope in terms of electronic properties of the substituents of the benzothiopyranone is broad. The ten grams scale-up synthesis of the representative compounds 4a and 4d was implemented to show the practical application of this reaction, which afforded the corresponding compounds in good yields and excellent chemical purity without requiring column chromatographical purification.

19.
J Biotechnol ; 289: 80-87, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30471323

ABSTRACT

Survivin, a member of inhibitor of apoptosis family, is currently undergoing intensive investigations as a promising cancer marker due to its overexpression in multiple tumor tissues and close relationship with chemotherapy resistance. In this study, a novel 3D survivin promoter assay was developed, using enhanced green fluorescent protein (EGFP) as the reporter to assess survivin promoter activity for cancer drug screening. Breast cancer MCF-7 cells were engineered to express EGFP controlled by a human survivin promoter and a CMV promoter, respectively. These cells were cultured in three-dimensional (3D) polymer-based scaffolds on a 40-microbioreactor platform (40-MBR) with real-time monitoring of EGFP signals. The EGFP production driven by the survivin promoter was strongly correlated with survivin transcriptional level in MCF-7 cells treated with YM155, a small-molecule survivin promoter suppressant. Moreover, the potential inhibition effects of doxorubicin and cisplatin on survivin and their cytotoxicity were also evaluated in this system. This study demonstrated the potential application of the novel 3D survivin promoter-EGFP reporter assay for high-throughput screening of chemicals down-regulating survivin as a molecular target for cancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Green Fluorescent Proteins/genetics , High-Throughput Screening Assays , Survivin/genetics , Cell Survival/drug effects , Cisplatin/pharmacology , Down-Regulation , Doxorubicin/pharmacology , Fluorescence , Genes, Reporter , Humans , MCF-7 Cells , Promoter Regions, Genetic
20.
Biotechnol Prog ; 34(6): 1407-1426, 2018 11.
Article in English | MEDLINE | ID: mdl-30290072

ABSTRACT

The culture of Chinese Hamster Ovary (CHO) cells for modern industrial applications, such as expression of recombinant proteins, requires media that support growth and production. Such media must support high viable cell densities while also stimulating the synthesis and extracellular transport of biologic products. Early media development efforts in this area yielded basic formulations to sustain growth, viability, and cellular function, albeit comprising animal sourced components, and complex constituents used in batch culture mode. Subsequent improvements included the development of serum-free and chemically defined (CD) media, the identification of critical nutrients, growth factors, and potentially inhibitory or toxic cellular metabolites, and the use of fed-batch and perfusion culture techniques to optimize nutrient delivery while minimizing accumulation of unwanted waste products. This review is comprised of sections covering milestones in the evolution of mammalian cell culture media, nutrient composition and formulation requirements, optimization strategies, consistency and scalability of powder and liquid media preparation for industrial applications, and key recent advances driving progress in CHO cell culture medium design and development. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1407-1426, 2018.


Subject(s)
Recombinant Proteins/metabolism , Animals , CHO Cells , Cell Culture Techniques , Cricetinae , Cricetulus , Culture Media , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...