Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 4066, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37429863

ABSTRACT

Despite advances in cancer treatment, immune checkpoint blockade (ICB) only achieves complete response in some patients, illustrating the need to identify resistance mechanisms. Using an ICB-insensitive tumor model, here we discover cisplatin enhances the anti-tumor effect of PD-L1 blockade and upregulates the expression of Ariadne RBR E3 ubiquitin-protein ligase 1 (ARIH1) in tumors. Arih1 overexpression promotes cytotoxic T cell infiltration, inhibits tumor growth, and potentiates PD-L1 blockade. ARIH1 mediates ubiquitination and degradation of DNA-PKcs to trigger activation of the STING pathway, which is blocked by the phospho-mimetic mutant T68E/S213D of cGAS protein. Using a high-throughput drug screen, we further identify that ACY738, less cytotoxic than cisplatin, effectively upregulates ARIH1 and activates STING signaling, sensitizing tumors to PD-L1 blockade. Our findings delineate a mechanism that tumors mediate ICB resistance through the loss of ARIH1 and ARIH1-DNA-PKcs-STING signaling and indicate that activating ARIH1 is an effective strategy to improve the efficacy of cancer immunotherapy.


Subject(s)
B7-H1 Antigen , Neoplasms , Humans , B7-H1 Antigen/genetics , Cisplatin/pharmacology , Cisplatin/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , T-Lymphocytes , DNA , Ubiquitin-Protein Ligases/genetics
2.
Cell Discov ; 8(1): 80, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35973984

ABSTRACT

Severe eosinophilic asthma (SEA) is a therapy-resistant respiratory condition with poor clinical control. Treatment efficacy and patient compliance of current therapies remain unsatisfactory. Here, inspired by the remarkable success of chimeric antigen receptor-based cellular adoptive immunotherapies demonstrated for the treatment of a variety of malignant tumors, we engineered a cytokine-anchored chimeric antigen receptor T (CCAR-T) cell system using a chimeric IL-5-CD28-CD3ζ receptor to trigger T-cell-mediated killing of eosinophils that are elevated during severe asthma attacks. IL-5-anchored CCAR-T cells exhibited selective and effective killing capacity in vitro and restricted eosinophil differentiation with apparent protection against allergic airway inflammation in two mouse models of asthma. Notably, a single dose of IL-5-anchored CCAR-T cells resulted in persistent protection against asthma-related conditions over three months, significantly exceeding the typical therapeutic window of current mAb-based treatments in the clinics. This study presents a cell-based treatment strategy for SEA and could set the stage for a new era of precision therapies against a variety of intractable allergic diseases in the future.

3.
Am J Transl Res ; 13(11): 12763-12774, 2021.
Article in English | MEDLINE | ID: mdl-34956491

ABSTRACT

Recent studies have shown that the expression level of PD-L1 in tumor cells positively correlates with tumor metastasis and recurrence rate. The effects of post-translational modifications (PTMs) of PD-L1 are related to immunosuppression. However, the degradation of PD-L1 in cancers has not yet been sufficiently defined. Here, we identified USP21 as a novel deubiquitinase of PD-L1. Overexpression of USP21 significantly increased PD-L1 abundance while its knockdown induced PD-L1 degradation. In vitro deubiquitination assay revealed that USP21-WT, but not USP21-C221A, reduced polyubiquitin chains of PD-L1. These results highlight the role of USP21 in the deubiquitination and stabilization of PD-L1. Furthermore, we show that USP21 is the frequently amplified deubiquitinase in lung cancer, especially in lung squamous cell carcinoma, and its amplification is accompanied by upregulation of PD-L1. This study reveals the mechanism of USP21-mediated PD-L1 degradation, and suggests that USP21 might be a potential target for the treatment of lung cancer.

4.
Nat Commun ; 12(1): 2346, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33879767

ABSTRACT

Cancer expression of PD-L1 suppresses anti-tumor immunity. PD-L1 has emerged as a remarkable therapeutic target. However, the regulation of PD-L1 degradation is not understood. Here, we identify several compounds as inducers of PD-L1 degradation using a high-throughput drug screen. We find EGFR inhibitors promote PD-L1 ubiquitination and proteasomal degradation following GSK3α-mediated phosphorylation of Ser279/Ser283. We identify ARIH1 as the E3 ubiquitin ligase responsible for targeting PD-L1 to degradation. Overexpression of ARIH1 suppresses tumor growth and promotes cytotoxic T cell activation in wild-type, but not in immunocompromised mice, highlighting the role of ARIH1 in anti-tumor immunity. Moreover, combining EGFR inhibitor ES-072 with anti-CTLA4 immunotherapy results in an additive effect on both tumor growth and cytotoxic T cell activation. Our results delineate a mechanism of PD-L1 degradation and cancer escape from immunity via EGFR-GSK3α-ARIH1 signaling and suggest GSK3α and ARIH1 might be potential drug targets to boost anti-tumor immunity and enhance immunotherapies.


Subject(s)
B7-H1 Antigen/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , B7-H1 Antigen/chemistry , CTLA-4 Antigen/antagonists & inhibitors , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , Female , Glycogen Synthase Kinase 3/metabolism , HEK293 Cells , High-Throughput Screening Assays , Humans , Immunotherapy/methods , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Models, Biological , Neoplasms/therapy , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Signal Transduction , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , Tumor Escape/physiology , U937 Cells , Ubiquitination/drug effects
5.
J Chromatogr A ; 1431: 184-196, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26777088

ABSTRACT

Despite of substantial developments of extraction and separation techniques, isolation of natural products from natural resources is still a challenging task. In this work, an efficient strategy for extraction and isolation of multi-component natural products has been successfully developed by combination of systematic two-phase liquid-liquid extraction-(13)C NMR pattern recognition and following conical counter-current chromatography separation. A small-scale crude sample was first distributed into 9 systematic hexane-ethyl acetate-methanol-water (HEMWat) two-phase solvent systems for determination of the optimum extraction solvents and partition coefficients of the prominent components. Then, the optimized solvent systems were used in succession to enrich the hydrophilic and lipophilic components from the large-scale crude sample. At last, the enriched components samples were further purified by a new conical counter-current chromatography (CCC). Due to the use of (13)C NMR pattern recognition, the kinds and structures of major components in the solvent extracts could be predicted. Therefore, the method could collect simultaneously the partition coefficients and the structural information of components in the selected two-phase solvents. As an example, a cytotoxic extract of podophyllotoxins and flavonoids from Dysosma versipellis (Hance) was selected. After the systematic HEMWat system solvent extraction and (13)C NMR pattern recognition analyses, the crude extract of D. versipellis was first degreased by the upper phase of HEMWat system (9:1:9:1, v/v), and then distributed in the two phases of the system of HEMWat (2:8:2:8, v/v) to obtain the hydrophilic lower phase extract and lipophilic upper phase extract, respectively. These extracts were further separated by conical CCC with the HEMWat systems (1:9:1:9 and 4:6:4:6, v/v). As results, total 17 cytotoxic compounds were isolated and identified. In general, whole results suggested that the strategy was very efficient for the systematic extraction and isolation of biological active components from the complex biomaterials.


Subject(s)
Berberidaceae/chemistry , Biological Products/isolation & purification , Chemistry Techniques, Analytical/methods , Flavonoids/isolation & purification , Liquid-Liquid Extraction , Magnetic Resonance Spectroscopy , Podophyllotoxin/isolation & purification , Biological Products/chemistry , Carbon/analysis , Flavonoids/chemistry , Hexanes/chemistry , Methanol/chemistry , Podophyllotoxin/chemistry , Solvents/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...