Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
1.
Nanoscale ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38978432

ABSTRACT

Flexible photodetectors have attracted escalating attention due to their pivotal role in next-generation wearable optoelectronic devices. This work presents high-performance photodetector devices based on CdTe/MoS2 heterojunctions, showcasing outstanding photodetecting and distinctive mechanical properties. The MoS2 film was exfoliated from bulk layered MoS2 and covered by a sputtered ultrathin CdTe film (∼8.4 nm) to form a heterojunction. Benefitting from the photovoltaic effect induced by the built-in electrical field near the high-quality interface, the fabricated CdTe/MoS2 heterojunction photodetector can operate as a self-powered photodetector without any external bias voltage, especially showing a high photodetectivity of 5.84 × 1011 Jones, remarkable photoresponsivity of 270.3 mA W-1, fast photoresponse with a rise/fall time of ∼44.8/134.2 µs and excellent bending durability. These results demonstrate that the CdTe/MoS2 heterojunctions could have significant potential for future applications in optoelectronic devices.

2.
Mol Cancer ; 23(1): 144, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004737

ABSTRACT

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) represents a prevalent malignant tumor, with approximately 40% of patients encountering treatment challenges or relapse attributed to rituximab resistance, primarily due to diminished or absent CD20 expression. Our prior research identified PDK4 as a key driver of rituximab resistance through its negative regulation of CD20 expression. Further investigation into PDK4's resistance mechanism and the development of advanced exosome nanoparticle complexes may unveil novel resistance targets and pave the way for innovative, effective treatment modalities for DLBCL. METHODS: We utilized a DLBCL-resistant cell line with high PDK4 expression (SU-DHL-2/R). We infected it with short hairpin RNA (shRNA) lentivirus for RNA sequencing, aiming to identify significantly downregulated mRNA in resistant cells. Techniques including immunofluorescence, immunohistochemistry, and Western blotting were employed to determine PDK4's localization and expression in resistant cells and its regulatory role in phosphorylation of Histone deacetylase 8 (HDAC8). Furthermore, we engineered advanced exosome nanoparticle complexes, aCD20@ExoCTX/siPDK4, through cellular, genetic, and chemical engineering methods. These nanoparticles underwent characterization via Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM), and their cellular uptake was assessed through flow cytometry. We evaluated the nanoparticles' effects on apoptosis in DLBCL-resistant cells and immune cells using CCK-8 assays and flow cytometry. Additionally, their capacity to counteract resistance and exert anti-tumor effects was tested in a resistant DLBCL mouse model. RESULTS: We found that PDK4 initiates HDAC8 activation by phosphorylating the Ser-39 site, suppressing CD20 protein expression through deacetylation. The aCD20@ExoCTX/siPDK4 nanoparticles served as effective intracellular delivery mechanisms for gene therapy and monoclonal antibodies, simultaneously inducing apoptosis in resistant DLBCL cells and triggering immunogenic cell death in tumor cells. This dual action effectively reversed the immunosuppressive tumor microenvironment, showcasing a synergistic therapeutic effect in a subcutaneous mouse tumor resistance model. CONCLUSIONS: This study demonstrates that PDK4 contributes to rituximab resistance in DLBCL by modulating CD20 expression via HDAC8 phosphorylation. The designed exosome nanoparticles effectively overcome this resistance by targeting the PDK4/HDAC8/CD20 pathway, representing a promising approach for drug delivery and treating patients with Rituximab-resistant DLBCL.


Subject(s)
Drug Resistance, Neoplasm , Exosomes , Lymphoma, Large B-Cell, Diffuse , Nanoparticles , Rituximab , Humans , Exosomes/metabolism , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/therapy , Rituximab/pharmacology , Rituximab/therapeutic use , Animals , Mice , Nanoparticles/chemistry , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Xenograft Model Antitumor Assays , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic/drug effects
3.
J Nanobiotechnology ; 22(1): 357, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902755

ABSTRACT

BACKGROUND: Early angiogenesis provides nutrient supply for bone tissue repair, and insufficient angiogenesis will lead tissue engineering failure. Lanthanide metal nanoparticles (LM NPs) are the preferred materials for tissue engineering and can effectively promote angiogenesis. Holmium oxide nanoparticles (HNPs) are LM NPs with the function of bone tissue "tracking" labelling. Preliminary studies have shown that HNPs has potential of promote angiogenesis, but the specific role and mechanism remain unclear. This limits the biological application of HNPs. RESULTS: In this study, we confirmed that HNPs promoted early vessel formation, especially that of H-type vessels in vivo, thereby accelerating bone tissue repair. Moreover, HNPs promoted angiogenesis by increasing cell migration, which was mediated by filopodia extension in vitro. At the molecular level, HNPs interact with the membrane protein EphrinB2 in human umbilical vein endothelial cells (HUVECs), and phosphorylated EphrinB2 can bind and activate VAV2, which is an activator of the filopodia regulatory protein CDC42. When these three molecules were inhibited separately, angiogenesis was reduced. CONCLUSION: Overall, our study confirmed that HNPs increased cell migration to promote angiogenesis for the first time, which is beneficial for bone repair. The EphrinB2/VAV2/CDC42 signalling pathway regulates cell migration, which is an important target of angiogenesis. Thus, HNPs are a new candidate biomaterial for tissue engineering, providing new insights into their biological application.


Subject(s)
Biocompatible Materials , Cell Movement , Holmium , Human Umbilical Vein Endothelial Cells , Neovascularization, Physiologic , Tissue Engineering , Tissue Engineering/methods , Humans , Animals , Holmium/chemistry , Cell Movement/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Neovascularization, Physiologic/drug effects , Mice , Metal Nanoparticles/chemistry , Oxides/chemistry , Oxides/pharmacology , Ephrin-B2/metabolism , Signal Transduction/drug effects , Male , Nanoparticles/chemistry
4.
Asian J Androl ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727256

ABSTRACT

ABSTRACT: Prostate cancer (PCa) is a significant health concern globally, necessitating effective treatment options. Typical treatment methods for early stage, particularly localized PCa, encompass radical procedures, such as radical prostatectomy (RP) and radiotherapy (RT), and nonradical focal therapy (FT). FT is a focused approach mainly used for treating small lesions limited to a specific zone of the prostate. Its objective is to achieve cancer control when minimizing damage to benign tissue. High-intensity focused ultrasound (HIFU) is one of the most used modalities in FT for the management of PCa. The progress in HIFU technology showcases continuous advancements, offering clinicians a variety of strategies to cater to diverse patient requirements. The advancements include the development of transrectal and transurethral HIFU machines that offer enhanced treatment distances, magnetic resonance imaging (MRI) fusion capabilities, real-time monitoring, and precise ablation. These improvements contribute to increased treatment effectiveness and better outcomes for patients. This narrative review aims to summarize the use of HIFU technology and its evolution, offering diverse options to clinicians, and explores the safety, effectiveness, and quality of different HIFU strategies, such as whole-gland ablation, hemigland ablation, and focal ablation. We conclude that nonwhole-gland HIFU offers similar cancer control with better short-term functional outcomes and fewer complications compared to whole-gland ablation. Combining HIFU with transurethral resection of the prostate (TURP) improves urinary function and reduces catheterization time. Focal ablation and hemigland ablation show promise in achieving cancer control when preserving continence and potency.

5.
Int J Immunopathol Pharmacol ; 38: 3946320241240706, 2024.
Article in English | MEDLINE | ID: mdl-38712735

ABSTRACT

Introduction: Bladder cancer represents a significant public health concern with diverse genetic alterations influencing disease onset, progression, and therapy response. In this study, we explore the multifaceted role of Solute Carrier Family 31 Member 1 (SLC31A1) in bladder cancer, a pivotal gene involved in copper homeostasis. Methods: Our research involved analyzing the SLC31A1 gene expression via RT-qPCR, promoter methylation via targeted bisulfite sequencing, and mutational status via Next Generation Sequencing (NGS) using the clinical samples sourced by the local bladder cancer patients. Later on, The Cancer Genome Atlas (TCGA) datasets were utilized for validation purposes. Moreover, prognostic significance, gene enrichment terms, and therapeutic drugs of SLC31A1 were also explored using KM Plotter, DAVID, and DrugBank databases. Results: We observed that SLC31A1 was significantly up-regulated at both the mRNA and protein levels in bladder cancer tissue samples, suggesting its potential involvement in bladder cancer development and progression. Furthermore, our investigation into the methylation status revealed that SLC31A1 was significantly hypomethylated in bladder cancer tissues, which may contribute to its overexpression. The ROC analysis of the SLC31A1 gene indicated promising diagnostic potential, emphasizing its relevance in distinguishing bladder cancer patients from normal individuals. However, it is crucial to consider other factors such as cancer stage, metastasis, and recurrence for a more accurate evaluation in the clinical context. Interestingly, mutational analysis of SLC31A1 demonstrated only benign mutations, indicating their unknown role in the SLC31A1 disruption. In addition to its diagnostic value, high SLC31A1 expression was associated with poorer overall survival (OS) in bladder cancer patients, shedding light on its prognostic relevance. Gene enrichment analysis indicated that SLC31A1 could influence metabolic and copper-related processes, further underscoring its role in bladder cancer. Lastly, we explored the DrugBank database to identify potential therapeutic agents capable of reducing SLC31A1 expression. Our findings unveiled six important drugs with the potential to target SLC31A1 as a treatment strategy. Conclusion: Our comprehensive investigation highlights SLC31A1 as a promising biomarker for bladder cancer development, progression, and therapy.


Subject(s)
Copper Transporter 1 , Urinary Bladder Neoplasms , Aged , Female , Humans , Male , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Copper Transporter 1/genetics , Copper Transporter 1/metabolism , Disease Progression , DNA Methylation , Gene Expression Regulation, Neoplastic , Mutation , Prognosis , Promoter Regions, Genetic , Up-Regulation , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
6.
Microorganisms ; 12(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38674673

ABSTRACT

Probiotics are beneficial for intestinal diseases. Research shows that probiotics can regulate intestinal microbiota and alleviate inflammation. Little research has been done on the effects of probiotics on colitis in mice. The purpose of this study was to investigate the inhibitory effect of the strains isolated and screened from the feces of healthy piglets on the enteritis of rocitrobacter. The compound ratio of isolated Lactobacillus L9 and Enterococcus faecalis L16 was determined, and the optimal compound ratio was selected according to acid production tests and bacteriostatic tests in vitro. The results showed that when the ratio of Lactobacillus L9 to Enterococcus faecalis L16 was 4:1, the pH value was the lowest, and the antibacterial diameter was the largest. Then, in animal experiments, flow cytometry was used to detect the number of T lymphocytes in the spleen and mesenteric lymph nodes of mice immunized with complex lactic acid bacteria. The results showed that the number of T lymphocytes in the spleen and mesenteric lymph nodes of mice immunized with complex lactic acid bacteria significantly increased, which could improve the cellular immunity of mice. The microbiota in mouse feces were sequenced and analyzed, and the results showed that compound lactic acid bacteria could increase the diversity of mouse microbiota. It stabilized the intestinal microbiota structure of mice and resisted the damage of pathogenic bacteria. The combination of lactic acid bacteria was determined to inhibit the intestinal colitis induced by Citrobacter, improve the cellular immune response of the body, and promote the growth of animals.

7.
Environ Sci Pollut Res Int ; 31(22): 32538-32552, 2024 May.
Article in English | MEDLINE | ID: mdl-38656720

ABSTRACT

Nitrous oxide (N2O) generation during composting not only leads to losses of nitrogen (N) but also reduces the agronomic values and environmental benefits of composting. This study aimed to investigate the effect of the C/N ratio on N2O emissions and its underlying mechanisms at the genetic level during the composting of vegetable waste. The experiment was set up with three treatments, including low C/N treatment (LT, C/N = 18), middle C/N treatment (MT, C/N = 30), and high C/N treatment (HT, C/N = 50). The results showed that N2O emission was mainly concentrated in the cooling and maturation periods, and the cumulative N2O emissions decreased as the C/N ratio increased. Specifically, the cumulative N2O emission was 57,401 mg in LT, significantly higher than 2155 mg in MT and 1353 mg in HT. Lowering the C/N ratio led to increasing TN, NH4+-N, and NO3--N contents throughout the composting process. All detected nitrification-related gene abundances in LT continued to increase during composting, significantly surpassing those in MT during the cooling period. By contrast, in HT, there was a slight increase in the abundance of detected nitrification-related genes but a significant decrease in the abundance of narG, napA, and norB genes in the thermophilic and cooling periods. The structural equation model revealed that hao and nosZ genes were vital in N2O emissions. In conclusion, increasing the C/N ratio effectively contributed to N2O reduction during vegetable waste composting.


Subject(s)
Carbon , Composting , Nitrogen , Nitrous Oxide , Vegetables , Nitrous Oxide/analysis , Soil/chemistry
8.
Front Bioeng Biotechnol ; 12: 1350227, 2024.
Article in English | MEDLINE | ID: mdl-38456007

ABSTRACT

Fibula transplantation plays an irreplaceable role in restoring the function and morphology of the defected mandible. However, the complex load-bearing environment of the mandible makes it urgent to accurately reconstruct the mandible, ensure the position of the condyle after surgery, and restore the patient's occlusal function and contour. The intervention of digital design and three-dimensional (3D) printed titanium mesh provides a more efficient method and idea to solve this problem. Digital design guides the accurate positioning, osteotomy, and simultaneous implant placement during surgery, and 3D printed titanium mesh ensures stable condyle position after surgery, restoring good mandibular function. The double-layer folded fibula maintains the vertical height of the mandible and a good facial contour, and simultaneous implant placement can establish a good occlusal relationship. This study conducted a retrospective analysis of five patients with jaw defects who underwent digital fibula reconstruction over the past 3 years. It was found that the surgical protocol combining digital design, 3D printed intraoperative guides, 3D printed titanium mesh, free fibula flap, immediate implant, and occlusal reconstruction to repair jaw defects had more ideal facial appearance and biological function. It will provide a more reliable surgical protocol for clinical management of large mandibular defects.

9.
Biomaterials ; 308: 122543, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38547834

ABSTRACT

Chronic implantation of intracortical microelectrode arrays (MEAs) capable of recording from individual neurons can be used for the development of brain-machine interfaces. However, these devices show reduced recording capabilities under chronic conditions due, at least in part, to the brain's foreign body response (FBR). This creates a need for MEAs that can minimize the FBR to possibly enable long-term recording. A potential approach to reduce the FBR is the use of MEAs with reduced cross-sectional geometries. Here, we fabricated 4-shank amorphous silicon carbide (a-SiC) MEAs and implanted them into the motor cortex of seven female Sprague-Dawley rats. Each a-SiC MEA shank was 8 µm thick by 20 µm wide and had sixteen sputtered iridium oxide film (SIROF) electrodes (4 per shank). A-SiC was chosen as the fabrication base for its high chemical stability, good electrical insulation properties, and amenability to thin film fabrication. Electrochemical analysis and neural recordings were performed weekly for 4 months. MEAs were characterized pre-implantation in buffered saline and in vivo using electrochemical impedance spectroscopy and cyclic voltammetry at 50 mV/s and 50,000 mV/s. Neural recordings were analyzed for single unit activity. At the end of the study, animals were sacrificed for immunohistochemical analysis. We observed statistically significant, but small, increases in 1 and 30 kHz impedance values and 50,000 mV/s charge storage capacity over the 16-week implantation period. Slow sweep 50 mV/s CV and 1 Hz impedance did not significantly change over time. Impedance values increased from 11.6 MΩ to 13.5 MΩ at 1 Hz, 1.2 MΩ-2.9 MΩ at 1 kHz, and 0.11 MΩ-0.13 MΩ at 30 kHz over 16 weeks. The median charge storage capacity of the implanted electrodes at 50 mV/s was 58.1 mC/cm2 on week 1 and 55.9 mC/cm2 on week 16, and at 50,000 mV/s, 4.27 mC/cm2 on week 1 and 5.93 mC/cm2 on week 16. Devices were able to record neural activity from 92% of all active channels at the beginning of the study, At the study endpoint, a-SiC devices were still recording single-unit activity on 51% of electrochemically active electrode channels. In addition, we observed that the signal-to-noise ratio experienced a small decline of -0.19 per week. We also classified observed units as fast and slow repolarizing based on the trough-to-peak time. Although the overall presence of single units declined, fast and slow repolarizing units declined at a similar rate. At recording electrode depth, immunohistochemistry showed minimal tissue response to the a-SiC devices, as indicated by statistically insignificant differences in activated glial cell response between implanted brains slices and contralateral sham slices at 150 µm away from the implant location, as evidenced by GFAP staining. NeuN staining revealed the presence of neuronal cell bodies close to the implantation site, again statistically not different from a contralateral sham slice. These results warrant further investigation of a-SiC MEAs for future long-term implantation neural recording studies.


Subject(s)
Carbon Compounds, Inorganic , Electrodes, Implanted , Microelectrodes , Motor Cortex , Rats, Sprague-Dawley , Silicon Compounds , Animals , Silicon Compounds/chemistry , Female , Motor Cortex/physiology , Motor Cortex/cytology , Carbon Compounds, Inorganic/chemistry , Rats , Neurons/physiology
10.
J Transl Med ; 21(1): 877, 2023 12 04.
Article in English | MEDLINE | ID: mdl-38049827

ABSTRACT

BACKGROUND: ND630 is believed to be a new therapy pharmacologic molecule in targeting the expression of ACACA and regulating the lipid metabolism. However, the function of ND630 in prostate cancer remains unknown. KIF18B, as an oncogene, plays a vital role in prostate cancer progression. circKIF18B_003 was derived from oncogene KIF18B and was markedly overexpressed in prostate cancer tissues. We speculated that oncoprotein KIF18B-derived circRNA circKIF18B_003 might have roles in prostate cancer promotion. The aim of this study was to validate whether ND630 could control ACACA and lipid reprogramming in prostate cancer by regulating the expression of circKIF18B_003. METHODS: RT-qPCR was used to analyze the expression of circKIF18B_003 in prostate cancer cell lines and prostate cancer samples. circKIF18B_003 expression was modulated in prostate cancer cells using circKIF18B_003 interference or overexpression plasmid. We examined the function and effects of circKIF18B_003 in prostate cancer cells using CCK-8, colony formation, wound healing, and Transwell invasion assays and xenograft models. Fluorescence in situ hybridization (FISH) was performed to evaluate the localization of circKIF18B_003. RNA immunoprecipitation (RIP), RNA pull down, and luciferase reporter assay were performed to explore the potential mechanism of circKIF18B_003. RESULTS: The function of ND630 was determined in this study. circKIF18B_003 was overexpressed in prostate cancer tissues, and overexpression of circKIF18B_003 was associated with poor survival outcome of prostate cancer patients. The proliferation, migration, and invasion of prostate cancer cells were enhanced after up-regulation of circKIF18B_003. circKIF18B_003 is mainly located in the cytoplasm of prostate cancer cells, and the RIP and RNA pull down assays confirmed that circKIF18B_003 could act as a sponge for miR-370-3p. Further study demonstrated that up-regulation of circKIF18B_003 increased the expression of ACACA by sponging miR-370-3p. The malignant ability of prostate cancer cells enhanced by overexpression of circKIF18B_003 was reversed by the down-regulation of ACACA. We found that overexpression of circKIF18B_003 was associated with lipid metabolism, and a combination of ND-630 and docetaxel markedly attenuated tumor growth. CONCLUSION: ND630 could control ACACA and lipid reprogramming in prostate cancer by regulating the expression of circKIF18B_003. ND630 and circKIF18B_003 may represent a novel target for prostate cancer.


Subject(s)
MicroRNAs , Prostatic Neoplasms , RNA, Circular , Humans , Male , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , In Situ Hybridization, Fluorescence , Kinesins/genetics , Kinesins/metabolism , Lipids , MicroRNAs/genetics , MicroRNAs/metabolism , Prostatic Neoplasms/genetics , RNA, Circular/genetics
11.
Article in English | MEDLINE | ID: mdl-38016024

ABSTRACT

High-voltage pouch cells using an LiCoO2 cathode and SiO/C anode are regarded as promising energy storage devices due to their high energy densities. However, their failure is associated with the unstable, high-impedance cathode electrolyte interphase (CEI) film on the cathode and the solid electrolyte interphase (SEI) film on the anode surface, which hinder their practical use. Here, we report a novel approach to ameliorate the above challenges through the rational construction of a stable, low-impedance cathode and anode interface film. Such films are simultaneously formed on both electrodes via the participation of the traditional salt, lithium tetrafluoroborate (LiBF4), as electrolyte additive. The application of 1.0% LiBF4 enhances the capacity retention of the cell from 26.1 to 82.2% after 150 cycles between 3.0 and 4.4 V at 1 C. Besides, the low-temperature discharge performance is also improved by LiBF4 application: the discharge capacity of the cell with LiBF4 is 794 mAh compared with 637 mAh without LiBF4 at 1 C and -20 °C. The excellent electrochemical performance of pouch cells is ascribed to the contribution of LiBF4. Especially, the low binding energy of LiBF4 with the oxygen on the LiCoO2 surface leads to the enrichment of LiBF4 that forms the protective cathode interface, which fills the blanks of previous research.

12.
Environ Res ; 237(Pt 2): 117059, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37659639

ABSTRACT

Soil nitrous oxide (N2O) emissions are alarming for global warming and climate change. N2O reduction is carried out only by nosZ gene encoded N2O-reductase, which is highly sensitive to acidic pH and copper (Cu) contents. Therefore, a microcosm study was conducted to examine the attribution of soil pH management, Cu supply and nosZ gene abundance for N2O emission mitigation. Cu was applied at the dose of 0, 10, 25 and 50 mg kg-1 to three acidic soils (Soil 1, 2 and 3) without and with dolomite (0 and 5 g kg-1). Cu application and soil pH increment substantially enlarged the abundance of nosZ gene, and consequently mitigated soil N2O emissions; highest reduction with 25 Cu mg kg-1. Decline in NH4+ and subsequently accumulation of NO3-, and large contents of MBC and DOC in dolomite treated soils led to a substantial N2O reduction. The cumulative N2O emissions were lowest in the treatment of 25 Cu mg kg-1 with dolomite application for each soil. Results suggest that soil pH increment, an adequate Cu supply, and nosZ gene abundance can potentially lower soil N2O emissions in acidic soils.

13.
Sci Total Environ ; 904: 166653, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37673243

ABSTRACT

With the increased construction of dam reservoirs and the demand for water security, terrestrial dissolved organic matter (DOM) has received attention because of its role in regulating water quality, ecological functions, and the fate and transport of pollutants in dam reservoirs. This study investigated the transformations of soil DOM and vegetation DOM of dam reservoirs following photodegradation and biodegradation before conservative mixing, as well as the resultant effects on phenanthrene binding. Based on the results, terrestrial DOM could undergo transformation via photodegradation and biodegradation before conservative mixing in dam reservoirs. Although both processes resulted in substantial decreases in DOM concentrations, the changes in chromophoric DOM and fluorescent DOM depended on the original DOM sources. Furthermore, the photodegradation of terrestrial DOM resulted in more pronounced photobleaching than photomineralization. In addition, photodegradation of terrestrial DOM resulted in the generation of DOM-derived by-products with low molecular weight and low aromaticity, whereas the biodegradation of terrestrial DOM resulted in DOM-derived by-products with low molecular weight and high aromaticity. Subsequently, the photodegradation and biodegradation of terrestrial DOM substantially enhanced the binding affinity of phenanthrene. Soil DOM is prior to vegetation DOM when predicting the ecological risk of HOCs. These results indicate that the terrestrial DOM in dam reservoirs should be reconsidered before conservative mixing. Further studies on the coupling effects of both biogeochemical processes, as well as on the relative contributions of soil DOM and vegetation DOM after transformation to the aquatic DOM in dam reservoirs, are required. This study provides information on the environmental effects of dam construction from the perspective of biogeochemical processes.


Subject(s)
Dissolved Organic Matter , Water Quality , Photolysis , Soil/chemistry , Biodegradation, Environmental
14.
Front Neurosci ; 17: 1202258, 2023.
Article in English | MEDLINE | ID: mdl-37383105

ABSTRACT

Intracortical microstimulation (ICMS) of the somatosensory cortex via penetrating microelectrode arrays (MEAs) can evoke cutaneous and proprioceptive sensations for restoration of perception in individuals with spinal cord injuries. However, ICMS current amplitudes needed to evoke these sensory percepts tend to change over time following implantation. Animal models have been used to investigate the mechanisms by which these changes occur and aid in the development of new engineering strategies to mitigate such changes. Non-human primates are commonly the animal of choice for investigating ICMS, but ethical concerns exist regarding their use. Rodents are a preferred animal model due to their availability, affordability, and ease of handling, but there are limited choices of behavioral tasks for investigating ICMS. In this study, we investigated the application of an innovative behavioral go/no-go paradigm capable of estimating ICMS-evoked sensory perception thresholds in freely moving rats. We divided animals into two groups, one receiving ICMS and a control group receiving auditory tones. Then, we trained the animals to nose-poke - a well-established behavioral task for rats - following either a suprathreshold ICMS current-controlled pulse train or frequency-controlled auditory tone. Animals received a sugar pellet reward when nose-poking correctly. When nose-poking incorrectly, animals received a mild air puff. After animals became proficient in this task, as defined by accuracy, precision, and other performance metrics, they continued to the next phase for perception threshold detection, where we varied the ICMS amplitude using a modified staircase method. Finally, we used non-linear regression to estimate perception thresholds. Results indicated that our behavioral protocol could estimate ICMS perception thresholds based on ~95% accuracy of rat nose-poke responses to the conditioned stimulus. This behavioral paradigm provides a robust methodology for evaluating stimulation-evoked somatosensory percepts in rats comparable to the evaluation of auditory percepts. In future studies, this validated methodology can be used to study the performance of novel MEA device technologies on ICMS-evoked perception threshold stability using freely moving rats or to investigate information processing principles in neural circuits related to sensory perception discrimination.

15.
bioRxiv ; 2023 May 05.
Article in English | MEDLINE | ID: mdl-37205577

ABSTRACT

Intracortical microstimulation (ICMS) of the somatosensory cortex via penetrating microelectrode arrays (MEAs) can evoke cutaneous and proprioceptive sensations for restoration of perception in individuals with spinal cord injuries. However, ICMS current amplitudes needed to evoke these sensory percepts tend to change over time following implantation. Animal models have been used to investigate the mechanisms by which these changes occur and aid in the development of new engineering strategies to mitigate such changes. Non-human primates are commonly the animal of choice for investigating ICMS, but ethical concerns exist regarding their use. Rodents are a preferred animal model due to their availability, affordability, and ease of handling, but there are limited choices of behavioral tasks for investigating ICMS. In this study, we investigated the application of an innovative behavioral go/no-go paradigm capable of estimating ICMS-evoked sensory perception thresholds in freely moving rats. We divided animals into two groups, one receiving ICMS and a control group receiving auditory tones. Then, we trained the animals to nose-poke - a well-established behavioral task for rats - following either a suprathreshold ICMS current-controlled pulse train or frequency-controlled auditory tone. Animals received a sugar pellet reward when nose-poking correctly. When nose-poking incorrectly, animals received a mild air puff. After animals became proficient in this task, as defined by accuracy, precision, and other performance metrics, they continued to the next phase for perception threshold detection, where we varied the ICMS amplitude using a modified staircase method. Finally, we used non-linear regression to estimate perception thresholds. Results indicated that our behavioral protocol could estimate ICMS perception thresholds based on ∼95% accuracy of rat nose-poke responses to the conditioned stimulus. This behavioral paradigm provides a robust methodology for evaluating stimulation-evoked somatosensory percepts in rats comparable to the evaluation of auditory percepts. In future studies, this validated methodology can be used to study the performance of novel MEA device technologies on ICMS-evoked perception threshold stability using freely moving rats or to investigate information processing principles in neural circuits related to sensory perception discrimination.

16.
Environ Res ; 232: 116225, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37247652

ABSTRACT

Continuous straw returning is widely encouraged for augmenting soil organic carbon (SOC) in arable lands. However, the magnitude of changes in net SOC related to native SOC mineralization and new SOC development upon fresh straw incorporation remains elusive, particularly in soils after continuous straw returning with different strategies. To address this, soil that had undergone nine years of straw returning with different strategies (NS, non-straw returning; DS, direct straw returning; IS, indirect straw returning) was incubated with fresh 13C-labeled straw for 45 days. Fresh straw incorporation stimulated native SOC-derived CO2 emission in DS soil, which in turn promoted straw-derived CO2 emission in IS soil. Overall, the amounts of newly developed SOC from straw (2.41-2.59 g C/kg soil) overcompensated for the native SOC losses (0.91-1.37 g C/kg soil) by mineralization, and led to net C sequestration in all treatments. No obvious difference was found in the amounts of SOC sequestrated from straw between the DS and NS soils, while the amount of native SOC mineralization increased by 40-50% in the DS soil relative to other treatments, thus resulting in lower net C sequestration in the DS soil (1.21 g C/kg soil) than IS and NS soil (1.43 and 1.65 g C/kg for IS and NS soil, respectively). Spearman's correlation analyses indicated a significant (p < 0.01) and positive correlation between SOC contents and native soil C mineralization, while the soil microbial index played a greater role in influencing fresh straw sequestration (p < 0.01). In conclusion, the DS soil showed a weaker effect on SOC sequestration than IS after 9 years of practices, upon fresh straw incorporation. This difference may be attributed to the magnitude of native SOC mineralization in the soil. Besides the straw-C input rate, results emphasize that native soil C protection should be also considered in long-term SOC sequestration practices.


Subject(s)
Carbon , Soil , Carbon/metabolism , Agriculture/methods , Carbon Dioxide , Carbon Sequestration
17.
Micromachines (Basel) ; 14(3)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36985087

ABSTRACT

Implantable microelectrode arrays (MEAs) enable the recording of electrical activity of cortical neurons, allowing the development of brain-machine interfaces. However, MEAs show reduced recording capabilities under chronic conditions, prompting the development of novel MEAs that can improve long-term performance. Conventional planar, silicon-based devices and ultra-thin amorphous silicon carbide (a-SiC) MEAs were implanted in the motor cortex of female Sprague-Dawley rats, and weekly anesthetized recordings were made for 16 weeks after implantation. The spectral density and bandpower between 1 and 500 Hz of recordings were compared over the implantation period for both device types. Initially, the bandpower of the a-SiC devices and standard MEAs was comparable. However, the standard MEAs showed a consistent decline in both bandpower and power spectral density throughout the 16 weeks post-implantation, whereas the a-SiC MEAs showed substantially more stable performance. These differences in bandpower and spectral density between standard and a-SiC MEAs were statistically significant from week 6 post-implantation until the end of the study at 16 weeks. These results support the use of ultra-thin a-SiC MEAs to develop chronic, reliable brain-machine interfaces.

18.
Environ Res ; 224: 115393, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36740153

ABSTRACT

Saline and alkaline soils are a challenge for sustainable crop production. The use of organic and inorganic amendments is a common practice to increase the fertility of salt-affected soils that can trigger faster carbon (C) and nitrogen (N) cycling. We examined the effects of gypsum (Gyps), farm manure (Manure) and rice straw (Straw) on enzyme activities, organic matter mineralization and CO2 emissions in two salt-affected soils [Solonchak (saline); pH: 8, electrical conductivity (EC): 6.5, sodium adsorption ratio (SAR): 2.5, and Solonetz (alkaline sodic); pH: 8.9, EC: 1.6, SAR: 17]. Gypsum addition decreased soil pH up to 0.62 and 0.30 units, SAR 1.2 and 5.2 units, and EC 2.9 and 1.4 units in Solonchak and Solonetz, respectively. Dissolved organic C, microbial biomass C, dissolved organic N, mineral N (NO3- and NH4+), enzyme activities (urease, invertase, catalase, phosphatase, phenol-oxidase), alkali extractable phenols, and available phosphorous increased with the application of all amendments in both soils. Solonetz released more CO2 than Solonchak, whereas maximum CO2 emissions were common after manure application (3140 mg kg-1 in Solonchak, and 3890 mg kg-1 in Solonetz). We conclude that high SAR and low EC increase CO2 emissions through accelerated C and N cycling and manure decomposition in Solonetz soils.


Subject(s)
Oryza , Soil , Soil/chemistry , Calcium Sulfate , Manure , Carbon Dioxide , Sodium Chloride , Carbon
19.
Environ Res ; 225: 115542, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36822538

ABSTRACT

Soil nitrous oxide (N2O) is produced by abiotic and biotic processes, but it is solely consumed by denitrifying microbes-encoded by nosZ genes. The nosZ gene includes two groups i.e. Clade I and Clade II, which are highly sensitive to pH. Managing pH of acidic soils can substantially influence soil N2O production or consumption through nosZ gene abundance. Nevertheless, the response of nosZ (Clade I and Clade II) to pH management needs elucidation in acidic soils. To clarify this research question, a pot experiment growing rice crop was conducted with three treatments: control (only soil), low dose of dolomite (LDD), and high dose of dolomite (HDD). The soil pH increased from 5.41 to 6.23 in the control, 6.5 in LDD and 6.8 in HDD treatment under flooded condition. The NH4+ and NO3- contents increased and reached the maximum at 30.4 and 21.5 mg kg-1, respectively, in HDD treatment under flooding condition. The contents of dissolved organic carbon and microbial biomass carbon showed a swift rise at midseason aeration and reached maximum at 30.7 and 101 mg kg-1 in the HDD treatment. Clade I, Clade II and 16S rRNA genes abundance increased with the onset of flooding, and occurred maximum in the HDD treatment. A peak in N2O emissions (5.96 µg kg-1 h-1) occurred at midseason events in the control when no dolomite was added. Dolomite application significantly (p ≤ 0.001) suppressed N2O emissions, and HDD treatment was more effective in reducing emissions. Pearson correlation, linear regressions and principal component analysis displayed that increased soil pH and Clade I and Clade II were the main controlling factors for N2O emission mitigation in acidic soil. This research demonstrates that ameliorating soil acidity with dolomite application is a potential option for the mitigation of N2O emissions.


Subject(s)
Oryza , Soil , Soil/chemistry , Oryza/genetics , RNA, Ribosomal, 16S , Carbon , Nitrous Oxide , Hydrogen-Ion Concentration , Soil Microbiology
20.
World J Urol ; 41(4): 1033-1039, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36792813

ABSTRACT

PURPOSE: To investigate the risk factors for postoperative lymphorrhea or/and lymphocele (PLL) in patients undergoing radical prostatectomy (RP). MATERIALS AND METHODS: The clinical data of 606 patients were retrospectively collected. The receiver operating characteristic (ROC) curve was utilized to identify the optimal cutoff value. Multivariable logistic regression analysis was used to screen the independent predictors of PLL. RESULTS: Univariate analysis showed that nine factors differed between the PLL and non-PLL group. Multivariable logistic regression analysis showed that low preoperative fibrinogen level, extraperitoneal surgery, robot-assisted laparoscopic radical prostatectomy (RALRP), and hypoalbuminemia were risk factors and the use of fibrin glue was a protective factor. Correlation analysis showed that the scope of LN dissection (LND) and number of lymph nodes (LNs) dissected were positively correlated with PLL in the extraperitoneal approach, but were not significantly correlated with PLL in the transperitoneal approach. The use of fibrin glue was negatively associated with PLL in the overall procedure and the extraperitoneal approach, but not significantly so in the transperitoneal approach. Comparison of LNs clearance between the two surgical approaches revealed that the extent of LND and number of LNs dissected in the extraperitoneal approach were less than in the transperitoneal approach. CONCLUSION: During RALRP, more attention should be paid to fully clotting the broken end of lymphatic vessels. The use of fibrin glue could reduce the probability of PLL. The extent of LND or number of LNs dissected were positively correlated with PLL in the extraperitoneal approach.


Subject(s)
Lymph Node Excision , Lymphocele , Male , Humans , Retrospective Studies , Lymph Node Excision/methods , Lymphocele/epidemiology , Lymphocele/etiology , Case-Control Studies , Fibrin Tissue Adhesive/therapeutic use , Prostatectomy/methods , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...