Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biochem Pharmacol ; 226: 116347, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852646

ABSTRACT

Human epidermal growth factor receptor 2 positive (HER2+) breast cancer (BC) tends to metastasize and has a bad prognosis due to its high malignancy and rapid progression. Inositol polyphosphate 4-phosphatase isoenzymes type II (INPP4B) plays unequal roles in the development of various cancers. However, the function of INPP4B in HER2+ BC has not been elucidated. Here we found that INPP4B expression was significantly lower in HER2+ BC and positively correlated with the prognosis by bioinformatics and tissue immunofluorescence analyses. Overexpression of INPP4B inhibited cell proliferation, migration, and growth of xenografts in HER2+ BC cells. Conversely, depletion of INPP4B reversed these effects and activated the PDK1/AKT and Wnt/ß-catenin signaling pathways to promote epithelial-mesenchymal transition (EMT) progression. Moreover, INPP4B overexpression blocked epidermal growth factor (EGF) -induced cell proliferation, migration and EMT progression, whereas INPP4B depletion antagonized HER2 depletion in reduction of cell proliferation and migration of HER2+ BC cells. Additionally, Lapatinib (LAP) inhibited HER2+ BC cell survival, proliferation and migration, and its effect was further enhanced by overexpression of INPP4B. In summary, our results illustrate that INPP4B suppresses HER2+ BC growth, migration and EMT, and its expression level affects patient outcome, further providing new insights into clinical practice.

2.
Front Plant Sci ; 15: 1374228, 2024.
Article in English | MEDLINE | ID: mdl-38803599

ABSTRACT

Environmental stresses are the main constraints on agricultural productivity and food security worldwide. This issue is worsened by abrupt and severe changes in global climate. The formation of sugarcane yield and the accumulation of sucrose are significantly influenced by biotic and abiotic stresses. Understanding the biochemical, physiological, and environmental phenomena associated with these stresses is essential to increase crop production. This review explores the effect of environmental factors on sucrose content and sugarcane yield and highlights the negative effects of insufficient water supply, temperature fluctuations, insect pests, and diseases. This article also explains the mechanism of reactive oxygen species (ROS), the role of different metabolites under environmental stresses, and highlights the function of environmental stress-related resistance genes in sugarcane. This review further discusses sugarcane crop improvement approaches, with a focus on endophytic mechanism and consortium endophyte application in sugarcane plants. Endophytes are vital in plant defense; they produce bioactive molecules that act as biocontrol agents to enhance plant immune systems and modify environmental responses through interaction with plants. This review provides an overview of internal mechanisms to enhance sugarcane plant growth and environmental resistance and offers new ideas for improving sugarcane plant fitness and crop productivity.

3.
J Cancer Res Clin Oncol ; 150(2): 74, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38305793

ABSTRACT

BACKGROUND: This study aimed to identify shared and distinct prognostic factors related to organ-specific metastases (liver, lung, bone, and brain) in extensive-stage small cell lung cancer (ES-SCLC) patients, then construct nomograms for survival prediction. METHODS: Patient data for ES-SCLC were from the Surveillance, Epidemiology, and End Results (SEER) database from 2010 to 2019. Kaplan-Meier analysis was applied to estimate overall survival (OS), and Cox regression was used to identify prognostic factors. A Venn diagram was utilized to distinguish common and unique prognostic factors among the variables assessed. These identified prognostic factors were used to formulate a nomogram, and its predictive accuracy and reliability were evaluated using C-indexes, calibration curves, and receiver operating characteristic (ROC) curves. RESULTS: A total of 24,507 patients diagnosed with ES-SCLC exhibiting metastases to the liver, lung, bone, and brain were included. The 6-month, 1-year, and 2-year OS rates were 46.1%, 19.7%, and 5.0%, respectively. Patients with liver metastasis demonstrated the most unfavorable prognosis, with a 1-year OS rate of 14.5%, while those with brain metastasis had a significantly better prognosis with a 1-year OS rate of 21.6%. The study identified seven common factors associated with a poor prognosis in ES-SCLC patients with organ-specific metastases: older age, male sex, unmarried status, higher T stage, presence of other metastases, and combination radiotherapy and chemotherapy. Furthermore, specific prognostic factors were identified for patients with metastasis to the liver, bone, and brain, including paired tumors, lack of surgical treatment at the primary site, and household income, respectively. To facilitate prognostic predictions, four nomograms were developed and subsequently validated. The performance of these nomograms was assessed using calibration curves, C-indexes, and the area under the curve (AUC), all of which consistently indicated good predictive accuracy and reliability. CONCLUSIONS: Patients diagnosed with ES-SCLC with organ-specific metastases revealed shared and distinct prognostic factors. The nomograms developed from these factors demonstrated good performance and can serve valuable clinical tools to predict the prognosis of ES-SCLC patients with organ-specific metastases.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Male , Small Cell Lung Carcinoma/therapy , Prognosis , Lung Neoplasms/therapy , Reproducibility of Results , Liver , Nomograms , SEER Program
4.
Biochem Pharmacol ; 221: 116038, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286211

ABSTRACT

PERK/eIF2α/ATF4/CHOP signaling pathway is one of three major branches of unfolded protein response (UPR) and has been implicated in tumor progression. CCT020312 is a selective PERK activator and may have a potential anti-tumor effect. Here we investigated the anti-prostate cancer effect and its underlying mechanism of CCT020312. Our results showed that CCT020312 inhibited prostate cancer cell viability by inducing cell cycle arrest, apoptosis and autophagy through activation of PERK/eIF2α/ATF4/CHOP signaling. CCT020312 treatment caused cell cycle arrest at G1 phase and increased the levels of cleaved-Caspase3, cleaved-PARP and Bax in prostate cancer C4-2 and LNCaP cells. Moreover, CCT020312 increased LC3II/I, Atg12-Atg5 and Beclin1 levels and induced autophagosome formation. Furthermore, knockdown of CHOP reversed CCT020312-induced cell viability decrease, apoptosis and autophagy. Bafilomycin A1 reversed CCT020312-induced cell viability decrease but had no effect on CCT020312-induced CHOP activation in C4-2 and LNCaP cells. In vivo, CCT020312 suppressed tumor growth in C4-2 cells-derived xenograft mouse model, activated PERK pathway, and induced autophagy and apoptosis. Our study illustrates that CCT020312 exerts an anti-tumor effect in prostate cancer via activating the PERK pathway, thus indicating that CCT020312 may be a potential drug for prostate cancer.


Subject(s)
Prostatic Neoplasms , Male , Humans , Animals , Mice , G1 Phase Cell Cycle Checkpoints , Prostatic Neoplasms/drug therapy , Autophagy , Apoptosis , Signal Transduction , Disease Models, Animal , Activating Transcription Factor 4/genetics
5.
Eur J Pharmacol ; 955: 175892, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37429520

ABSTRACT

Emerging evidence suggests that genetically highly specific triple-negative breast cancer (TNBC) possesses a relatively uniform transcriptional program that is abnormally dependent on cyclin-dependent kinase 7 (CDK7). In this study, we obtained an inhibitor of CDK7, N76-1, by attaching the side chain of the covalent CDK7 inhibitor THZ1 to the core of the anaplastic lymphoma kinase inhibitor ceritinib. This study aimed to elucidate the role and underlying mechanism of N76-1 in TNBC and evaluate its potential value as an anti-TNBC drug. The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation assays showed that N76-1 inhibited the viability of TNBC cells. Kinase activity and cellular thermal shift assays showed that N76-1 directly targeted CDK7. Flow cytometry results revealed that N76-1 induced apoptosis and cell cycle arrest in the G2/M phase. N76-1 also effectively inhibited the migration of TNBC cells by high-content detection. The RNA-seq analysis showed that the transcription of genes, especially those related to transcriptional regulation and cell cycle, was suppressed after N76-1 treatment. Moreover, N76-1 markedly inhibited the growth of TNBC xenografts and phosphorylation of RNAPII in tumor tissues. In summary, N76-1 exerts potent anticancer effects in TNBC by inhibiting CDK7 and provides a new strategy and research basis for the development of new drugs for TNBC.


Subject(s)
Cyclin-Dependent Kinase-Activating Kinase , Triple Negative Breast Neoplasms , Humans , Cell Line, Tumor , Cell Proliferation , Cyclin-Dependent Kinase-Activating Kinase/antagonists & inhibitors , Cyclin-Dependent Kinases , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Animals
6.
Biochem Pharmacol ; 214: 115634, 2023 08.
Article in English | MEDLINE | ID: mdl-37290596

ABSTRACT

VPS34-IN1 is a specific selective inhibitor of Class III Phosphatidylinositol 3-kinase (PI3K) and has been shown to exhibit a significant antitumor effect in leukemia and liver cancer. In current study, we focused on the anticancer effect and potential mechanism of VPS34-IN1 in estrogen receptor positive (ER+ ) breast cancer. Our results revealed that VPS34-IN1 inhibited the viability of ER+ breast cancer cells in vitro and in vivo. Flow cytometry and western blot analyses showed that VPS34-IN1 treatment induced breast cancer cell apopotosis. Interestingly, VPS34-IN1 treatment activated protein kinase R (PKR)-like ER kinase (PERK) branch of endoplasmic reticulum (ER) stress. Furthermore, knockdown of PERK by siRNA or inhibition of PERK activity by chemical inhibitor GSK2656157 could attenuate VPS34-IN1-mediated apoptosis in ER+ breast cancer cells. Collectively, VPS34-IN1 has an antitumor effect in breast cancer, and it may result from activating PERK/ATF4/CHOP pathway of ER stress to induce cell apoptosis. These findings broaden our understanding of the anti-breast cancer effects and mechanisms of VPS34-IN1 and provide new ideas and reference directions for the treatment of ER+ breast cancer.


Subject(s)
Neoplasms , eIF-2 Kinase , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Signal Transduction , Phosphatidylinositol 3-Kinases/metabolism , Apoptosis , Endoplasmic Reticulum Stress , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism
7.
Life Sci ; 325: 121772, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37178864

ABSTRACT

AIMS: Montelukast is an antagonist of cysteinyl leukotriene receptor 1 (CysLTR1) that protects against inflammation and oxidative stress. However, the function of montelukast in liver fibrosis remains unknown. In this study, we examined whether the pharmacological inhibition of CysLTR1 could protect mice against hepatic fibrosis. MATERIALS AND METHODS: Carbon tetrachloride (CCl4) and methionine-choline deficient (MCD) diet models were used in this study. The expression of CysLTR1 in liver were detected by RT-qPCR and Western blot analysis. Liver hydroxyproline levels, fibrotic genes expression, serum biochemical indexes and inflammatory factors were used to evaluate the effect of montelukast on liver fibrosis, injury, and inflammation. In vitro, we used the RT-qPCR and Western blot analysis to assess CysLTR1 in mouse primary hepatic stellate cell (HSC) and human LX-2 cell line. The role of montelukast on HSC activation and the underlying mechaisms were determined using RT-qPCR analysis, Western blot and immunostaining assays. KEY FINDINGS: Chronic stimulation from CCl4 and MCD diet upregulated the mRNA and protein levels of CysLTR1 in the liver. Pharmacological inhibition of CysLTR1 by montelukast ameliorated liver inflammation and fibrosis in both models. Mechanistically, montelukast suppressed HSC activation by targeting the TGFß/Smad pathway in vitro. The hepatoprotective effect of montelukast was also associated with reduced liver injury and inflammation. SIGNIFICANCE: Montelukast suppressed CCl4- and MCD-induced chronic hepatic inflammation and liver fibrosis. CysLTR1 might be a therapeutic target for treating liver fibrosis.


Subject(s)
Carbon Tetrachloride , Methionine , Mice , Humans , Animals , Carbon Tetrachloride/toxicity , Methionine/metabolism , Hepatic Stellate Cells/metabolism , Signal Transduction , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/prevention & control , Liver/metabolism , Fibrosis , Racemethionine/metabolism , Racemethionine/pharmacology , Inflammation/pathology , Diet , Transforming Growth Factor beta1/metabolism
8.
Materials (Basel) ; 11(10)2018 Sep 29.
Article in English | MEDLINE | ID: mdl-30274282

ABSTRACT

The effects of carbon content on the mechanical properties and deformation mechanisms of boron carbides were investigated by first-principles calculations, based on the density functional theory. The B12⁻CBC (13.33 at % C) and B10 C 2 P ⁻CC (28.75 at % C) were studied and then compared with the deformation of regular B11CP⁻CBC (20.0 at % C). The results show the B10 C 2 P ⁻CC, which has the lowest carbon content, has the highest strength and hardness as well as the lowest toughness. With the increase of carbon content, the rhombohedral symmetry will be broken and the three-atoms chains will be replaced by diatomic carbon chains. These changes may have an influence on their anisotropic deformation mechanisms. For the B12⁻CBC, the destruction of icosahedra without bending three-atom chains causes structural failure for compression along the c axis; while for compression along the a axis, new B⁻B bonds are formed, causing an unrecoverable deformation; then it is gradually destroyed until full destruction. For the B10 C 2 P ⁻CC, the anisotropic deformation mechanism is not obvious. For both loading directions, the breakage of B⁻CP bonds causes the stress to drop, suggesting that the structure is beginning to be destroyed. Finally, the icosahedra are fully destroyed, resulting in structural failure.

9.
Planta ; 245(3): 583-594, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27909790

ABSTRACT

MAIN CONCLUSIONS: Exogenously applied GR24 affected somatic embryo formation and morphogenesis of strigolactone-deficient tomato mutant through cross-talk with auxins and cytokinins indicating involvement of SLs in the embryogenic process. Strigolactones (SLs) mediate the regulation of plant responses to the environment through cross-talk with other plant hormones, especially auxins. Auxins play a crucial role in coordinating the morphogenesis and development of plant reproductive organs, including the signal-transduction cascade leading to the reprogramming of gene-expression patterns before embryo formation. SLs' role in these processes is unknown, in contrast to their proven involvement in auxin transport and distribution. We used tomato cv. M82 and its SL-deficient mutant SL-ORT1 to study the influence of SLs on hormone profile in tomato roots and shoots, and their involvement in somatic embryogenesis (SE) and morphogenesis (adventitious root formation). The synthetic SL GR24 had different effects on SE of M82 and SL-ORT1, indicating that SLs influence the cytokinin-to-auxin ratio in tomato SE.


Subject(s)
Heterocyclic Compounds, 3-Ring/pharmacology , Lactones/pharmacology , Plant Growth Regulators/metabolism , Plant Somatic Embryogenesis Techniques , Solanum lycopersicum/embryology , Solanum lycopersicum/metabolism , Culture Media/chemistry , Solanum lycopersicum/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Regeneration/drug effects
10.
J Plant Physiol ; 170(11): 1039-46, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23702248

ABSTRACT

Fusarium wilt of banana is caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc). The fact that there are no economically viable biological, chemical, or cultural measures of controlling the disease in an infected field leads to search for alternative strategies involving activation of the plant's innate defense system. The mechanisms underlying systemic acquired resistance (SAR) are much less understood in monocots than in dicots. Since systemic protection of plants by attenuated or avirulent pathogens is a typical SAR response, the establishment of a biologically induced SAR model in banana is helpful to investigate the mechanism of SAR to Fusarium wilt. This paper described one such model using incompatible Foc race 1 to induce resistance against Foc tropical race 4 in an in vitro pathosystem. Consistent with the observation that the SAR provided the highest level of protection when the time interval between primary infection and challenge inoculation was 10d, the activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL, EC 4.3.1.5), peroxidase (POD, EC 1.11.1.7), polyphenol oxidase (PPO, EC 1.14.18.1), and superoxide dismutase (SOD, EC 1.15.1.1) in systemic tissues also reached the maximum level and were 2.00-2.43 times higher than that of the corresponding controls on the tenth day. The total salicylic acid (SA) content in roots of banana plantlets increased from about 1 to more than 5 µg g⁻¹ FW after the second leaf being inoculated with Foc race 1. The systemic up-regulation of MaNPR1A and MaNPR1B was followed by the second up-regulation of PR-1 and PR-3. Although SA and jasmonic acid (JA)/ethylene (ET) signaling are mostly antagonistic, systemic expression of PR genes regulated by different signaling pathways were simultaneously up-regulated after primary infection, indicating that both pathways are involved in the activation of the SAR.


Subject(s)
Fusarium/pathogenicity , Musa/microbiology , Gene Expression Regulation, Plant , Musa/immunology , Musa/metabolism , Salicylic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...