Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38798583

ABSTRACT

The rapid and sustained proliferation in cancer cells requires accelerated protein synthesis. Accelerated protein synthesis and disordered cell metabolism in cancer cells greatly increase the risk of translation errors. ribosome-associated quality control (RQC) is a recently discovered mechanism for resolving ribosome collisions caused by frequent translation stalls. The role of the RQC pathway in cancer initiation and progression remains controversial and confusing. In this study, we investigated the pathogenic role of mitochondrial stress-induced protein carboxyl-terminal terminal alanine and threonine tailing (msiCAT-tailing) in glioblastoma (GBM), which is a specific RQC response to translational arrest on the outer mitochondrial membrane. We found that msiCAT-tailed mitochondrial proteins frequently exist in glioblastoma stem cells (GSCs). Ectopically expressed msiCAT-tailed mitochondrial ATP synthase F1 subunit alpha (ATP5α) protein increases the mitochondrial membrane potential and blocks mitochondrial permeability transition pore (MPTP) formation/opening. These changes in mitochondrial properties confer resistance to staurosporine (STS)-induced apoptosis in GBM cells. Therefore, msiCAT-tailing can promote cell survival and migration, while genetic and pharmacological inhibition of msiCAT-tailing can prevent the overgrowth of GBM cells. Highlights: The RQC pathway is disturbed in glioblastoma (GBM) cellsmsiCAT-tailing on ATP5α elevates mitochondrial membrane potential and inhibits MPTP openingmsiCAT-tailing on ATP5α inhibits drug-induced apoptosis in GBM cellsInhibition of msiCAT-tailing impedes overall growth of GBM cells.

2.
Front Oncol ; 13: 1161639, 2023.
Article in English | MEDLINE | ID: mdl-37483484

ABSTRACT

Background: Cancers arising within the gastrointestinal tract are complex disorders involving genetic events that cause the conversion of normal tissue to premalignant lesions and malignancy. Shared genetic features are reported in epithelial-based gastrointestinal cancers which indicate common susceptibility among this group of malignancies. In addition, the contribution of rare variants may constitute parts of genetic susceptibility. Methods: A cross-cancer analysis of 38,171 shared rare genetic variants from genome-wide association assays was conducted, which included data from 3,194 cases and 1,455 controls across three cancer sites (esophageal, gastric and colorectal). The SNP-level association was performed by multivariate logistic regression analyses for single cancer, followed by association analysis for SubSETs (ASSET) to adjust the bias of overlapping controls. Gene-level analyses were conducted by SKAT-O, with multiple comparison adjustments by false discovery rate (FDR). Based on the significant genes indicated by SKATO analysis, pathways analysis was conducted using Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome databases. Results: Meta-analysis in three gastrointestinal (GI) cancers identified 13 novel susceptibility loci that reached genome-wide significance (P ASSET< 5×10-8). SKAT-O analysis revealed EXOC6, LRP5L and MIR1263/LINC01324 to be significant genes shared by GI cancers (P adj<0.05, P FDR<0.05). Furthermore, GO pathway analysis identified significant enrichment of synaptic transmission and neuron development pathways shared by all three cancer types. Conclusion: Rare variants and the corresponding genes potentially contribute to shared susceptibility in different GI cancer types. The discovery of these novel variants and genes offers new insights for the carcinogenic mechanisms and missing heritability of GI cancers.

3.
J Gene Med ; 24(10): e3438, 2022 10.
Article in English | MEDLINE | ID: mdl-35821600

ABSTRACT

BACKGROUND: The Notch signaling pathway is involved in the progression of esophageal squamous cell carcinoma (ESCC), although the roles of single nucleotide polymorphisms (SNPs) of the Notch signaling pathway genes in the process remain unknown. METHODS: The present study included 1009 patients with histopathologically diagnosed ESCC at Fudan University Shanghai Cancer Center. Two-stage multivariate Cox proportional hazards regression analysis was used to estimate associations between 13,248 SNPs in 103 Notch signaling pathway genes and overall survival of the patients. RESULTS: We found that overall survival of the patients was significantly associated with genotypes of HDAC9 rs1729318 (AT+TT vs. AA: hazard ratio = 1.44, 95% confidence interval = 1.16-1.80, pcombined  = 0.001) and HDAC9 rs1339555498 (GT + TT vs. GG: hazard ratio = 1.38, 95% confidence interval = 1.10-1.74, pcombined = 0.005). Further receiver operator characteristic (ROC) curve analysis indicated that the model with both available clinical factors and these two SNPs improved the area under the ROC curve compared to the model with clinical factors only (1-year: 0.66 vs. 0.64, p = 0.034). Additional expression quantitative trait loci analysis showed that the rs1729318 T variant genotypes were associated with increased mRNA expression levels of HDAC9 in normal esophageal muscular tissue (p = 0.003). CONCLUSIONS: The results suggest that these two potential functional SNPs on HDAC9 may serve as biomarkers for predicting survival of ESCC patients. However, further studies are needed to confirm these findings.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Receptors, Notch , China/epidemiology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Humans , RNA, Messenger , Receptors, Notch/genetics , Signal Transduction/genetics
4.
J Cancer ; 8(3): 434-442, 2017.
Article in English | MEDLINE | ID: mdl-28261345

ABSTRACT

Predictive biomarkers based individualized chemotherapy can improve efficacy. However, for those advanced patients, it may be impossible to obtain the tissues from operation. Tissues from biopsy may not be always enough for gene detection. Thus, biomarker from blood could be a non-invasive and useful tool to provide real-time information in the procedure of treatment. To further understand the role of plasma mRNA in chemo-efficiency prediction, several mRNA expression levels were assessed in plasma and paired tumor tissues from 133 locally advanced gastric cancer patients (stage III), and mRNA levels were correlated with chemosensitivity to docetaxel, pemetrexed, platinum, and irinotecan. mRNA expression level in 64 advanced gastric cancer patients (stage IV) was also examined (55 in test group, and 9 in control), and chemotherapy in the test group were given according to the plasma gene detection. As a result, in the 133 patients with locally advanced gastric cancer (Stage III), correlations were observed between the mRNA expression of plasma/tumor BRCA1 levels and docetaxel sensitivity (P<0.001), plasma/tumor TS and pemetrexed sensitivity (P<0.001), plasma/tumor BRCA1 and platinum sensitivity (plasma, P=0.016; tumor, P<0.001), and plasma/tumor TOPO1 and irinotecan sensitivity (plasma, P=0.015; tumor, P=0.011). Among another 64 patients with advanced cancer (Stage IV), the median OS of test group was 15.5m (95% CI=10.1 to 20.9m), the PFS was 9.1m (95% CI=8.0 to 10.2m), which were significant longer than the control (P=0.047 for OS, P=0.038 for PFS). The mortality risk was higher in the control than patients treated according to the plasma gene detection (HR in the control=2.34, 95% CI=0.93 to 5.88, P=0.071). Plasma mRNA as liquid biopsy could be ideal recourse for examination to predict chemo-sensitivity in gastric cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...