Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Sci Rep ; 14(1): 10904, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740859

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis, ranks among the top causes of global human mortality, as reported by the World Health Organization's 2022 TB report. The prevalence of M. tuberculosis strains that are multiple and extensive-drug resistant represents a significant barrier to TB eradication. Fortunately, having many completely sequenced M. tuberculosis genomes available has made it possible to investigate the species pangenome, conduct a pan-phylogenetic investigation, and find potential new drug targets. The 442 complete genome dataset was used to estimate the pangenome of M. tuberculosis. This study involved phylogenomic classification and in-depth analyses. Sequential filters were applied to the conserved core genome containing 2754 proteins. These filters assessed non-human homology, virulence, essentiality, physiochemical properties, and pathway analysis. Through these intensive filtering approaches, promising broad-spectrum therapeutic targets were identified. These targets were docked with FDA-approved compounds readily available on the ZINC database. Selected highly ranked ligands with inhibitory potential include dihydroergotamine and abiraterone acetate. The effectiveness of the ligands has been supported by molecular dynamics simulation of the ligand-protein complexes, instilling optimism that the identified lead compounds may serve as a robust basis for the development of safe and efficient drugs for TB treatment, subject to further lead optimization and subsequent experimental validation.


Subject(s)
Antitubercular Agents , Drug Design , Mycobacterium tuberculosis , Proteomics , Tuberculosis , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Antitubercular Agents/pharmacology , Humans , Tuberculosis/drug therapy , Tuberculosis/microbiology , Proteomics/methods , Genome, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Phylogeny , Molecular Docking Simulation , Molecular Dynamics Simulation , Genomics/methods
2.
Materials (Basel) ; 17(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38673164

ABSTRACT

The use of metal-coated ceramic powders not only effectively enhances the wettability of the metal-ceramic interface but also promotes a more uniform microstructure in Ti(C,N)-based cermets, which is advantageous for improving their mechanical properties. In this study, ultrafine Co- and Ni-coated (Ti,W,Mo,Ta)(C,N) powders were synthesized via the spray-drying-in-situ carbothermal reduction method. Subsequently, Ti(C,N)-based cermets were effectively fabricated using the as-prepared ultrafine Co- and Ni-coated (Ti,W,Mo,Ta)(C,N) powders. The impact of reaction temperature, heating rate, and isothermal time on the phase and microstructure of prepared powders was analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Additionally, the microstructure of the as-sintered cermets was experimentally investigated. The findings reveal that the complete reduction of Co and Ni metal salts, pre-coated on the surface of (Ti,W,Mo,Ta)(C,N) particles, can be achieved through rapid heating (10 °C/min) in a specific temperature range (600-1000 °C) with an isothermal time of 3 h at a lower reduction temperature (1000 °C). The synthesized powders have only two phases: the (Ti,W,Mo,Ta)(C,N) phase and Co/Ni phase, and no other heterogeneous phases were observed with an oxygen content of 0.261 wt.%. Notably, the conventional core-rim structure was not dominant in the cermets obtained from the prepared Co- and Ni-coated (Ti,W,Mo,Ta)(C,N) powders. Moreover, the heterogeneous segregation effect of the Co/Ni coating on the ultrafine powder particles resulted in a finer microstructure than the traditional cermets with the same composition. However, the grain size is mainly in the range of 0.5-0.8 µm. The weaker residual stresses at the core and rim interfaces and the finer particle distributions could theoretically enhance the toughness of Ti(C,N)-based cermets, simultaneously.

3.
Article in English | MEDLINE | ID: mdl-38329718

ABSTRACT

Single-atom catalysts (SACs) have been investigated and applied to energy conversion devices. However, issues of metal agglomeration, low metal loading, and substrate stability have hindered realization of the SACs' full potential. Recently, covalent organic framework (COF)-based SACs have emerged as promising materials to enable highly efficient catalytic reactions. Here, we summarize the representative COF-based SACs and their wide application in clean energy devices and conversion reactions, such as hydrogen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, oxygen reduction reaction, and oxygen evolution reaction. Based on their catalysis conditions, these reactions are categorized into photocatalyzed and electrocatalyzed reactions. We also summarize their design strategies, including heteroatom inclusion, donor-acceptor pairs, pore engineering, interface engineering, etc. Although COF-based SACs are promising, more efforts, such as linkage engineering, functional groups, ionization, multifunctional sites for cocatalyzed systems, etc., could improve them to be the ideal SAC materials. At the end, we provide our perspectives on where the field will proceed in the next 5 years.

4.
Toxicology ; 501: 153705, 2024 01.
Article in English | MEDLINE | ID: mdl-38070821

ABSTRACT

Volatile organic compounds (VOCs) are common air pollutants and water contaminants. We previously found maternal exposure to VOCs was associated with offspring congenital heart disease (CHD). However, little information is available about the effects of VOCs on cardiovascular development at embryonic stage and the underlying mechanism remains unclear. In this study, we aimed to investigate the effects of a mixture of six VOCs on cardiovascular development in zebrafish embryos. Embryos were exposed to different concentrations of VOCs mixture (32 mg/L, 64 mg/L and 128 mg/L) for 96 h, cardiovascular abnormalities including elongated heart shape, increased distance between sinus venosus and bulbus arteriosus, slowed circulation and altered heart rate were observed in a dose- and time-dependent manner. Meanwhile, VOCs exposure increased global DNA methylation levels in embryos. Analysis identified hundreds of differentially methylated sites and the enrichment of differentially methylated sites on cardiovascular development. Two differentially methylated-associated genes involved in MAPK pathway, hgfa and ntrk1, were identified to be the potential genes mediating the effects of VOCs. By enzyme-linked immunosorbent assay, altered human serum hgf and ntrk1 levels were detected in abnormal pregnancies exposed to higher VOCs levels with fetal CHD. For the first time, our study revealed exposure to VOCs induced severe cardiovascular abnormalities in zebrafish embryos. The toxicity might result from alterations in DNA methylation and corresponding expression levels of genes involved in MAPK pathway. Our study provides important information for the risk of VOCs exposure on embryonic cardiovascular development.


Subject(s)
Air Pollutants , Cardiovascular Abnormalities , Volatile Organic Compounds , Humans , Animals , Female , Zebrafish/metabolism , Volatile Organic Compounds/toxicity , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , DNA Methylation , Heart , Air Pollutants/toxicity
5.
Transl Pediatr ; 12(9): 1690-1706, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37814720

ABSTRACT

Background: Sepsis is the second-leading cause of death in neonates. We established a predictive nomogram to identify critically ill neonates early and reduce the time to treatment. Methods: It is a retrospective case-control study based on the MIMIC-III database. The study population comprised 924 neonates diagnosed with sepsis. Results: Neonates with sepsis included in the MIMIC-III database were enrolled, including 880 surviving neonates and 44 neonates who died. In the derivation dataset, stepwise regression and the Lasso algorithm were employed to select predictive variables, and the neonatal sequential organ failure assessment score (nSOFA) was calculated simultaneously. Bootstrap resampling was utilized to perform internal validation. The results indicated that the Lasso algorithm displayed superior discrimination, sensitivity, and specificity relative to stepwise regression and nSOFA scores. After 500 bootstrap resampling tests, the area under the receiver operating characteristic curve (AUC) of the Lasso algorithm was 0.912 (95% CI: 0.870-0.977). The nomogram based on the Lasso algorithm outperformed stepwise regression and nSOFA scores in terms of calibration and the clinical net benefit. This nomogram can assist in prognosticating neonatal severe sepsis and aid in guiding clinical practice while concurrently improving patient outcomes. Conclusions: The established nomogram revealed that jaundice, corticosteroid use, weight, serum calcium, inotropes and base excess are all important predictors of 28-day mortality in neonates with sepsis. This nomogram can facilitate the early identification of neonates with severe sepsis. However, it still requires further modification and external validation to make it widely available.

6.
Chin Med J (Engl) ; 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37488672

ABSTRACT

BACKGROUND: Intrauterine valvuloplasty is an innovative therapy, which promotes ventricular growth and function in some congenital heart diseases (CHDs). The technique remains challenging and can only be performed in a few centers. This study aimed to assess the feasibility and mid-term outcomes of fetal cardiac intervention (FCI) in fetuses with critical CHD in an experienced tertiary center. METHODS: Five fetal aortic valvuloplasty (FAV) or fetal pulmonary valvuloplasty (FPV) procedures were performed in our fetal heart center between August 2018 and May 2022. Technical success was defined as crossing the aortic or pulmonary valve and balloon inflation, followed by evidence of increased blood flow across the valve and/or new regurgitation. Follow-up clinical records and echocardiography were obtained during the prenatal and postnatal periods. RESULTS: Five fetuses received FAV or FPV, including critical aortic stenosis (n = 2) and pulmonary atresia with intact ventricular septum (n = 3). The mean maternal age was 33.0 ± 2.6 years. The median gestational age (GA) at diagnosis was 24 weeks (range, 22-26 weeks). The median GA at intervention was 29 weeks (range, 28-32 weeks). All five cases underwent successful or partially successful procedures. One patient had pulmonary valve perforation without balloon dilation. No procedure-related deaths or significant complications occurred. However, one neonatal death occurred due to heart and renal failure. The median follow-up period was 29.5 months (range, 8.0-48.0 months). The four surviving patients had achieved biventricular circulation, exhibited improved valve, and ventricular development at the last follow-up visit. CONCLUSION: Intrauterine FCI could be performed safely with good prognosis in critical CHD.

7.
BMC Bioinformatics ; 24(1): 251, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37322437

ABSTRACT

Hennekam Lymphangiectasia-Lymphedema Syndrome 3 (HKLLS3) is a rare genetical disorder caused by mutations in a few genes including ADAMTS3. It is characterized by lymphatic dysplasia, intestinal lymphangiectasia, severe lymphedema and distinctive facial appearance. Up till now, no extensive studies have been conducted to elucidate the mechanism of the disease caused by various mutations. As a preliminary investigation of HKLLS3, we sorted out the most deleterious nonsynonymous single nucleotide polymorphisms (nsSNPs) that might affect the structure and function of ADAMTS3 protein by using a variety of in silico tools. A total of 919 nsSNPs in the ADAMTS3 gene were identified. 50 nsSNPs were predicted to be deleterious by multiple computational tools. 5 nsSNPs (G298R, C567Y, A370T, C567R and G374S) were found to be the most dangerous and can be associated with the disease as predicted by different bioinformatics tools. Modelling of the protein shows it can be divided into segments 1, 2 and 3, which are connected by short loops. Segment 3 mainly consists of loops without substantial secondary structures. With prediction tools and molecular dynamics simulation, some SNPs were found to significantly destabilize the protein structure and disrupt the secondary structures, especially in segment 2. The deleterious effects of mutations in segment 1 are possibly not from destabilization but from other factors such as the change in phosphorylation as suggested by post-translational modification (PTM) studies. This is the first-ever study of ADAMTS3 gene polymorphism, and the predicted nsSNPs in ADAMST3, some of which have not been reported yet in patients, will serve for diagnostic purposes and further therapeutic implications in Hennekam syndrome, contributing to better diagnosis and treatment.


Subject(s)
Lymphedema , Polymorphism, Single Nucleotide , Humans , Molecular Dynamics Simulation , Lymphedema/genetics , Protein Stability , Computational Biology
8.
J Pharm Biomed Anal ; 233: 115431, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37148697

ABSTRACT

Ilex pubescens Hook. et Arn is a medicinal plant of the Ilex family that is mainly used for the treatment of cardiovascular diseases. Its main medicinal ingredients are total triterpenoid saponins (IPTS). However, the pharmacokinetics and tissue distribution of the main multi-triterpenoid saponins are lacking. This is the first report that demonstrates a sensitive ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-qTOF-MS/MS) method for the quantification of ilexgenin A (C1), ilexsaponin A1 (C2), ilexsaponin B1 (C3), ilexsaponin B2 (C4), ilexsaponin B3 (DC1) and ilexoside O (DC2) in rat plasma and various tissues of the heart, liver, spleen, lungs, kidney, brain, stomach, duodenum, jejunum, ileum, colon and thoracic aorta. The chromatographic separation was carried out on an Acquity HSS T3 UPLC column (2.1 × 100 mm, 1.8 µm, Waters, USA) with a mobile phase consisting of 0.1% (v/v) formic acid (A) and acetonitrile containing 0.1% (v/v) formic acid (B) at a flow rate of 0.25 mL/min. The MS/MS detection was performed by electrospray ionization (ESI) using selected ion monitoring (SIM) in negative scan mode. The developed quantification method showed good linearity over the concentration range of 10-2000 ng/mL for plasma and 25-5000 ng/mL for tissue homogenates with R2 ≥ 0.990. Lower limits of quantification (LLOQ) was 10 ng/mL in plasma and 25 ng/mL in tissue homogenates. The intra- and inter-day precision were less than 10.39%, and the accuracy was between - 1.03% and 9.13%. The extract recoveries, dilution integrity and matrix effect were well within satisfactory limits. Using the validated method, the pharmacokinetic parameters, including half-life, AUC, Cmax, CL, and MRT, of six triterpenoid saponins in rats after oral administration were provided by establishing their plasma concentration-time curves, while their absolute quantification in various tissues after oral administration was also determined at first, which provides a scientific basis for their clinical application.


Subject(s)
Drugs, Chinese Herbal , Ilex , Saponins , Triterpenes , Rats , Animals , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Tissue Distribution , Ilex/chemistry , Saponins/chemistry , Drugs, Chinese Herbal/chemistry , Administration, Oral , Triterpenes/chemistry
9.
Front Pediatr ; 11: 1165972, 2023.
Article in English | MEDLINE | ID: mdl-37215606

ABSTRACT

Objectives: Congenital ventricular aneurysms or diverticulum (VA/VD) are rare cardiac anomalies with lack prenatal evaluation data. The present study aimed to provide the prenatal characteristics and outcomes from a tertiary center and the use of new techniques to evaluate the shape and contractility of these fetuses. Methods: Ten fetuses were diagnosed with VA or VD, and 30 control fetuses were enrolled. Fetal echocardiography was performed to make the diagnosis. The prenatal echo characteristics and follow-up data were carefully reviewed. The shape and contractility measurements of the four-chamber view (4CV) and both ventricles were measured and computed using fetal fetal heart quantification (HQ). Results: A total of 10 fetuses were enrolled, including 4 cases of left ventricular diverticulum, 5 cases of left ventricular aneurysm, and 1 case of right ventricular aneurysm (RVA). Four cases chose to terminate the pregnancy. The RVA was associated with a perimembranous ventricular septal defect. Two cases had fetal arrhythmia, and one case had pericardial effusion. After birth, one case underwent surgical resection at five years old. The 4CV global sphericity index (SI) of free-wall located ventricular outpouching (VO) was significantly lower than the apical ones and the control group (p < 0.01). Four of five apical left VOs had significant higher (>95th centile) SI in base segments, and three of four left VOs in the free-wall had significant lower (< 5th centile) SI in the majority of 24 segments. Compared to the control group, the left ventricle (LV) global longitudinal strain, ejection fraction, and fractional area change were significantly decreased (p < 0.01), while the LV cardiac output of the cases was in the normal range. The transverse fraction shortening of the affected segments of ventricles was significantly lower than the other ventricle segments (p < 0.01). Conclusions: Fetal HQ is a promising technique to evaluate the shape and contractility of congenital ventricular aneurysm and diverticulum.

10.
Materials (Basel) ; 16(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37110009

ABSTRACT

For investigating the influence mechanism underlying ultrafine Ti(C, N) within micron Ti(C, N)-based cermets, three cermets including diverse ultrafine Ti(C, N) contents were employed. In addition, for the prepared cermets, their sintering process, microstructure, and mechanical properties were systematically studied. According to our findings, adding ultrafine Ti(C, N) primarily affects the densification and shrinkage behavior in the solid-state sintering stage. Additionally, material-phase and microstructure evolution were investigated under the solid-state stage from 800 to 1300 °C. Adding ultrafine Ti(C, N) enhanced the diffusion and dissolution behavior of the secondary carbide (Mo2C, WC, and (Ta, Nb)C) under a lower sintering temperature of 1200 °C. Further, as sintering temperature increased, adding ultrafine Ti(C, N) enhanced heavy element transformation behaviors in the binder phase and accelerated solid-solution (Ti, Me) (C, N) phase formation. When the addition of ultrafine Ti(C, N) reached 40 wt%, the binder phase had increased its liquefying speed. Moreover, the cermet containing 40 wt% ultrafine Ti(C, N) displayed superb mechanical performances.

11.
BMC Med ; 21(1): 103, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36941582

ABSTRACT

BACKGROUND: Current evidence relating birthweight and gestational age to cardiovascular risk is conflicting. Whether these factors have independent or interactive impacts on cardiovascular parameters during early childhood remains unclear. The goal of this study was to explore whether there were any independent and interactive effects of gestational age and birthweight on blood pressure, left ventricle (LV) structure, and function in 4 years old. METHODS: This study included 1194 children in the Shanghai Birth Cohort from 2013 to 2016. Information about the mothers and children was recorded at time of birth using a questionnaire. Follow-up measurements, including anthropometric, blood pressure, and echocardiography, were taken between 2018 and 2021, when the children were 4 years old. Multiple linear or logistic regressions and restricted cubic spline were used to explore the association of birthweight and gestational age with cardiovascular measurements. RESULTS: Gestational age had a significant negative correlation with both systolic blood pressure [ß = - 0.41, 95% CI: (- 0.76, - 0.07)] and mean arterial pressure [ß = - 0.36, 95%CI: (- 0.66, - 0.07)]. The risk of prehypertension decreased with increased gestational age [OR = 0.54, 95% CI: (0.32, 0.93)]. The relationship between birthweight with blood pressure was U-shape (P for non-linear < 0.001). The wall thickness, volume, mass, and cardiac output of LV increased with birthweight, though the ejection fraction [ß = - 1.02, 95% CI: (- 1.76, - 0.27)] and shorten fraction [ß = 0.72, 95% CI: (- 1.31, - 0.14)] decreased with birthweight. The risk of LV hypertrophy was not associated with birthweight [OR = 1.59, 95% CI: (0.68, 3.73)]. CONCLUSIONS: In this study, we found different associations of birthweight and gestational age with cardiovascular measurements in the offspring at 4 years old. Gestational age influenced blood pressure independent of birthweight. Heart size and function at 4 years old was influenced mostly by birthweight and not by gestational age.


Subject(s)
Birth Weight , Child , Female , Humans , Child, Preschool , Blood Pressure , Cohort Studies , Gestational Age , Prospective Studies , China
12.
Environ Int ; 173: 107748, 2023 03.
Article in English | MEDLINE | ID: mdl-36848830

ABSTRACT

BACKGROUND: High maternal plasma perfluoroalkyl substances (PFAS) concentrations has been associated with adverse birth outcomes, but data on early childhood cardiovascular health is limited. This study aimed to assess the potential association between maternal plasma PFAS concentrations during early pregnancy and cardiovascular development in offspring. MATERIAL AND METHODS: Cardiovascular development was assessed through blood pressure measurement, echocardiography and carotid ultrasound examinations among 957 children from the Shanghai Birth Cohort aged at 4 years old. Maternal plasma concentrations of PFAS were measured at mean gestational age of 14.4 (SD:1.8) weeks. The joint associations between PFAS mixture concentrations and cardiovascular parameters were analyzed using a Bayesian kernel machine regression (BKMR). The potential association of individual PFAS chemicals concentrations was explored using multiple linear regression. RESULTS: In BKMR analyses, carotid intima media thickness (cIMT), interventricular septum thickness in diastole and systole, posterior wall thicknesses in diastole and systole, and relative wall thickness were significantly lower when all log10-transformed PFAS were fixed at 75th percentile in comparison to at their 50th percentile[Estimated overall Risk:-0.31 (95%CI: -0.42, -0.20), -0.09 (95%CI: -0.11, -0.07), -0.21 (95%CI: -0.26, -0.16), -0.09 (95%CI: -0.11, -0.07), -0.07 (95%CI: -0.10, -0.04) and -0.005 (95%CI: -0.006, -0.004)].Furthermore, maternal plasma concentrations of individual short-chain PFAS was associated with a decrease in left ventricular wall thickness, intraventricular septum thickness and enlarged chamber volume, and long-chain with a decrease in cIMT. CONCLUSIONS: Our findings suggest that maternal plasma PFAS concentrations during early pregnancy was adversely associated with cardiovascular development in offspring, including thinner cardiac wall thickness and cIMT.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Pregnancy , Child , Female , Humans , Child, Preschool , Aged , Infant , Maternal Exposure/adverse effects , Prospective Studies , Bayes Theorem , Carotid Intima-Media Thickness , Environmental Pollutants/adverse effects , Fluorocarbons/adverse effects , China
13.
Echocardiography ; 40(3): 244-251, 2023 03.
Article in English | MEDLINE | ID: mdl-36808139

ABSTRACT

OBJECTIVES: This study aimed to evaluate whether fetal echocardiographic parameters were predictive of the postnatal surgical treatment required for fetuses with Tetralogy of Fallot (TOF). METHODS: The fetal echocardiographic and postnatal clinical data of all cases of prenatal TOF at Xinhua Hospital from 2016 to 2020 were reviewed. Patients were categorized based on the operation type, and cardiac parameters were compared between groups. RESULTS: Of the 37 fetuses assessed, the development of the pulmonary valve annulus (PVA) was significantly poorer in the transannular patch group. Patients with a prenatal PVA z-score (Schneider's method) ≥ -2.645, a PVA z-score (Lee's method) ≥ -2.805, a PVA/aortic valve annulus diameter ratio ≥ .697, and a pulmonary annulus index ≥ .823 were more likely to undergo pulmonary valve-sparing surgery. There was a strong correlation between prenatal and postnatal PVA z-scores. The PVA growth potential was greater in the pulmonary valve-sparing surgery group. CONCLUSIONS: PVA-related parameters evaluated by fetal echocardiography can predict the type of surgical intervention required and are valuable in improving prenatal counseling in fetal cases of TOF.


Subject(s)
Cardiac Surgical Procedures , Pulmonary Valve , Tetralogy of Fallot , Female , Humans , Pregnancy , Tetralogy of Fallot/surgery , Retrospective Studies , Pulmonary Valve/diagnostic imaging , Echocardiography , Treatment Outcome
14.
Environ Sci Pollut Res Int ; 30(16): 45966-45976, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36715800

ABSTRACT

This paper develops a new two-dimensional model to estimate the radon exhalation rate of fractured porous media. The fractal discrete fracture network is used to characterize the fracture structure in the model. The finite element method solves the governing equations of radon migrations in fractures and porous matrix. Well-equipped laboratory tests validate the model with reasonable accuracy. The comparison of the model with the traditional radon migration model indicates that the model can simulate radon migration in fractured porous media more effectively than the traditional model. The effects of fracture intensity (P21), seepage velocity, and fracture connectivity on radon migration in fractured porous media are analyzed using the model. The radon exhalation rate increases with the fracture intensity and seepage velocity. There is an exponential relationship between fracture connectivity and radon concentration. The model provides a reliable method to analyze radon migration in fractured porous media and is helpful for radon pollution prevention and control.


Subject(s)
Radon , Soil Pollutants, Radioactive , Fractals , Porosity , Radon/analysis , Soil Pollutants, Radioactive/analysis , Models, Chemical
15.
Front Cardiovasc Med ; 9: 1048795, 2022.
Article in English | MEDLINE | ID: mdl-36465446

ABSTRACT

Objective: Coronary artery fistula, defined as communication between a coronary artery and a great vessel or a cardiac chamber, is a relatively rare anomaly with an estimated incidence of 0.002% in the general population. It could be combined with a giant coronary artery aneurysm, with an incidence of 5.9% of the total incidence rate of CAF in the general population. The pathogenesis of these two combined anomalies is not clear, and we aimed to detect whether genetic abnormalities underlie the pathogenesis of these rarely combined anomalies. Materials and methods: A 6-year-old patient with a diagnosis of the right coronary artery to right ventricle fistula combined with a giant right coronary artery aneurysm and patent ductus arteriosus underwent a surgical repair at our center. The diagnosis was confirmed by echocardiography, CT, and surgery. DNA was extracted from the peripheral venous blood samples of the patient and his mother after informed consent was obtained. Hematoxylin and Eosin (HE) and Alizarin red staining were performed on the excised coronary artery aneurysm. Exome sequencing and in silico analyses were performed to detect detrimental genetic variants. Results: No obvious abnormalities were found in the excised coronary artery aneurysm. A heterozygous truncated variant (NM_144573: c.G298T; p.G100X) in the NEXN gene and a missense variant (NM_001171: c.G1312A; p.V438M) in the ABCC6 gene were carried by the patient but not by his mother. Conclusion: The NEXN-truncated variant, NEXN-G100X, is associated with the development of coronary arteries and congenital coronary artery anomalies.

17.
PLoS Genet ; 18(12): e1010530, 2022 12.
Article in English | MEDLINE | ID: mdl-36459505

ABSTRACT

Defects in laterality pattern can result in abnormal positioning of the internal organs during the early stages of embryogenesis, as manifested in heterotaxy syndrome and situs inversus, while laterality defects account for 3~7% of all congenital heart defects (CHDs). However, the pathogenic mechanism underlying most laterality defects remains unknown. In this study, we recruited 70 laterality defect patients with CHDs to identify candidate disease genes by exome sequencing. We then evaluated rare, loss-of-function (LOF) variants, identifying candidates by referring to previous literature. We chose TRIP11, DNHD1, CFAP74, and EGR4 as candidates from 776 LOF variants that met the initial screening criteria. After the variants-to-gene mapping, we performed function research on these candidate genes. The expression patterns and functions of these four candidate genes were studied by whole-mount in situ hybridization, gene knockdown, and gene rescue methods in zebrafish models. Among the four genes, trip11, dnhd1, and cfap74 morphant zebrafish displayed abnormalities in both cardiac looping and expression patterns of early signaling molecules, suggesting that these genes play important roles in the establishment of laterality patterns. Furthermore, we performed immunostaining and high-speed cilia video microscopy to investigate Kupffer's vesicle organogenesis and ciliogenesis of morphant zebrafish. Impairments of Kupffer's vesicle organogenesis or ciliogenesis were found in trip11, dnhd1, and cfap74 morphant zebrafish, which revealed the possible pathogenic mechanism of their LOF variants in laterality defects. These results highlight the importance of rare, LOF variants in identifying disease-related genes and identifying new roles for TRIP11, DNHD1, and CFAP74 in left-right patterning. Additionally, these findings are consistent with the complex genetics of laterality defects.


Subject(s)
Heart Defects, Congenital , Heterotaxy Syndrome , Animals , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Body Patterning/genetics , Heart Defects, Congenital/metabolism , Heterotaxy Syndrome/genetics , Heterotaxy Syndrome/metabolism , Cilia/genetics , Cilia/metabolism
18.
Front Pediatr ; 10: 996332, 2022.
Article in English | MEDLINE | ID: mdl-36245716

ABSTRACT

Primary ciliary dyskinesia (PCD) is a rare genetic disorder characterized by motile ciliary dysfunction and impaired ultrastructure. Despite numerous studies, the genetic basis for about 30% of PCD cases remains to be elucidated. Here, we present the identification and functional analysis of two novel mutations in the gene encoding coiled-coil domain-containing protein 40 (CCDC40), which are found in a familial case of PCD. These novel CCDC40 mutations, NM_017950.4: c.2236-2delA and c.2042_2046delTCACA, NP_060420.2: p.(Ile681fs), were identified by whole-exome sequencing (WES). Sanger sequencing was then performed to confirm the WES results and determine the CCDC40 gene sequences of the proband's parents. The c.2042_2046delTCACA mutation disrupts the reading frame of the protein and is therefore predicted to produce a non-functional protein. Using a minigene assay with the pcDNA3.1(+) plasmid, we further investigated the potential pathogenic effects of the c.2236-2delA mutation and found that this mutation leads to formation of a truncated protein via splicing disruption. Thus, in summary, we identified two mutations of the CCDC40 gene that can be considered pathogenic compound heterozygous mutations in a case of familial PCD, thereby expanding the known mutational spectrum of the CCDC40 gene in this disease.

19.
J Pharm Pharmacol ; 74(12): 1749-1757, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36206186

ABSTRACT

OBJECTIVES: Triterpenoid saponins of Ilex pubescens (IPTS), the main active components of Ilex pubescens, has a therapeutic effect on atherosclerosis (AS). The ingredients in IPTS that could be intracellularly transported by human umbilical vein endothelial cells (HUVECs) may play an essential role in AS. This study attempted to explore its mechanism from the perspectives of HUVECs' inflammation, apoptosis, and autophagy. METHODS: By using a tumour necrosis factor-α (TNF-α)-induced HUVECs injury model, cell viability and the expression of intercellular adhesion molecule 1 (ICAM1), matrix metalloproteinase 9 (MMP9), cleave-caspase-3 and cleave-caspase-9, in combination with the results of flow cytometry, JC-1 and Hoechst 33258 staining were investigated to evaluate the anti-inflammatory and anti-apoptotic impact effects of IPTS on HUVECs. Afterwards, the expression of microtubule-associated proteins light chain 3II (LC3II) and sequestosome 1 (p62) was determined to test the effect of IPTS on autophagy. Finally, by adding an autophagy inhibitor 3-methyladenine (3-MA), we investigated whether IPTS exerts anti-inflammatory and anti-apoptotic effects through the autophagy pathway. KEY FINDINGS: We firstly demonstrated that pretreatment with IPTS could increase the cell viability, maintain the cell morphology and reduce TNF-α-induced inflammation and apoptosis of HUVECs. Moreover, IPTS pretreatment was proved to raise the expression of LC3II /LC3I while decreasing the expression of p62, which indicated that IPTS could activate HUVECs' autophagy. IPTS has been shown for the first time to exert anti-inflammatory and anti-apoptotic effects through autophagy and thereby resisting TNF-α-induced inflammatory injury of HUVECs. CONCLUSIONS: This study preliminarily confirmed that IPTS ameliorated HUVECs' inflammation and apoptosis by increasing autophagy.


Subject(s)
Ilex , Saponins , Triterpenes , Humans , Anti-Inflammatory Agents/pharmacology , Apoptosis , Autophagy , Human Umbilical Vein Endothelial Cells/drug effects , Ilex/chemistry , Inflammation/chemically induced , Inflammation/drug therapy , Saponins/pharmacology , Triterpenes/pharmacology , Tumor Necrosis Factor-alpha/adverse effects
20.
Article in English | MEDLINE | ID: mdl-36308451

ABSTRACT

Congenital aortocaval fistula (ACF) is a rare cardiac malformation. While it can occur in combination with patent ductus arteriosus (PDA), this has not been reported. In this case, a 1-year-old infant had a heart murmur found in a routine physical examination, and PDA was revealed by transthoracic echocardiography and abdominal ACF was detected by three-dimensional coronary artery computed tomography. Percutaneous interventional therapy, used for ACF and PDA, was performed to occlude the malformation. The patient presented good health without any discomfort at a 1-year follow-up. The percutaneous closure of ACF and PDA with an Amplatzer vascular device can be considered an appropriate option.


Subject(s)
Ductus Arteriosus, Patent , Septal Occluder Device , Infant , Humans , Ductus Arteriosus, Patent/complications , Ductus Arteriosus, Patent/diagnostic imaging , Ductus Arteriosus, Patent/surgery , Echocardiography/methods , Cardiac Catheterization/methods , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...