Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
ChemSusChem ; : e202301778, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38433647

ABSTRACT

Photocatalysis has the advantages of practical, sustainable and environmental protection, so it plays a significant role in energy transformation and environmental utilization. CeO2 has attracted widespread attention for its unique 4 f electrons, rich defect structures, high oxygen storage capacity and great chemical stability. In this paper, we review the structure of CeO2 and the common methods for the preparation of CeO2-based composites in the first part. In particular, we highlight the co-precipitation method, template method, and sol-gel method methods. Then, in the second part, we introduce the application of CeO2-based composites in photocatalysis, including photocatalytic CO2 reduction, hydrogen production, degradation, selective organic reaction, and photocatalytic nitrogen fixation. In addition, we discuss several modification techniques to improve the photocatalytic performance of CeO2-based composites, such as elemental doping, defect engineering, constructing heterojunction and morphology regulation. Finally, the challenges faced by CeO2-based composites are analyzed and their development prospects are prospected. This review provides a systematic summary of the recent advance of CeO2-based composites in the field of photocatalysis, which can provide useful references for the rational design of efficient CeO2-based composite photocatalysts for sustainable development.

2.
Phytomedicine ; 125: 155346, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237511

ABSTRACT

BACKGROUND: Hyperhomocysteine (HHcy) plays an important role in promoting inflammation and cell death of tubular epithelial cells. However, the role of HHcy and Astragaloside IV (AS-IV) in sepsis associated acute kidney injury (S-AKI) remain unclear. PURPOSE: A significant aspect of this study aimed to elucidate the effect of AS-Ⅳ treatment on HHcy-exacerbated S-AKI and reveal its potential mechanism. METHODS: Male C57BL/6 J mice fed with specific diet containing 2% methionine were established as in vivo models, and AS-Ⅳ was orally administrated continuously for 3 weeks, and then LPS (10 mg·kg-1 bodyweight) was given by a single intraperitoneal injection. The renal morphological changes were evaluated by HE and PAS staining. RNA-sequencing analysis was applied to select key signaling. The NRK-52E cells exposed to Hcy or combined with LPS were used as in vitro models. The mRNA and protein expression levels of Gpr97-TPL2 signaling were examined by qRT-PCR and western blotting assays. RESULTS: In vivo, HHcy mice developed more severe renal injury and prevalent tubular inflammation after LPS injection. In vitro, the levels of NGAL, Gpr97 and TPL2 were significantly increased in NRK-52E cells induced by Hcy (1.6 mM) or in combination with LPS. Notably, the effects of Hcy on TPL2 signaling was abolished by transfecting TPL2 siRNA or treating TPL2 inhibitor, without alterations in Gpr97. However, the enhancement of Gpr97-TPL2 signaling induced by Hcy was counteracted by Gpr97 siRNA. Subsequently, our findings demonstrated that AS-Ⅳ treatment can improve renal function in HHcy-exacerbated S-AKI mice. Mechanistically, AS-Ⅳ alleviated renal tubular damage characterized by abnormal increases in KIM-1, NGAL, TPL2, Gpr97, Sema3A and TNF-α, and decreases in survivin in vivo and in vitro mainly through suppressing the activation of Gpr97-TPL2 signaling. CONCLUSION: The present study suggested that HHcy-exacerbated S-AKI was mediated mechanically by activation of Gpr97-TPL2 signaling for the first time. Furthermore, our research also illustrated that AS-Ⅳ protected against HHcy-exacerbated S-AKI by attenuating renal tubular epithelial cells damage through negatively regulating Gpr97-TPL2 signaling, proposing a natural product treatment strategy for HHcy-exacerbated S-AKI.


Subject(s)
Acute Kidney Injury , Saponins , Sepsis , Triterpenes , Male , Mice , Animals , Lipocalin-2/adverse effects , Lipopolysaccharides/adverse effects , Mice, Inbred C57BL , Acute Kidney Injury/chemically induced , Sepsis/complications , Sepsis/drug therapy , RNA, Small Interfering , Inflammation
3.
Chin Med ; 19(1): 5, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38183139

ABSTRACT

BACKGROUND: The synthetic liver X receptor ligand (LXR) T0901317 (T0) has been reported to attenuate atherosclerosis (AS) without hyperglyceridemia due to innovative drug combination or nano-sized drug delivery. Given the key roles of mangiferin (MGF) in lipid metabolism and atherogenesis, it is critical to investigate progression of atherosclerotic lesion after combined treatment of MGF and T0. METHODS: Atherosclerotic plaque formation and hepatic lipid accumulation were compared in Apoe-/- mice among T0 and/or MGF treatment. The in vitro functions of MGF and T0 were analyzed by Oil-red O staining, cholesterol efflux assay, transmission electron microscopy and western blot analyses with or without acetylated low density lipoprotein. RESULTS: The combination therapy are effective regulators for atherosclerotic plaque formation in Apoe-/- mice, due to upregulation of ABCA1 and ABCG1 induced by LXR activation. Subsequently, we identified autophagy promoted by MGF and T0 treatment establishes a positive feedback loop that increases cholesterol efflux, resulted from LXRα activation. Under atherogenic conditions, the autophagy inhibitor CQ abolished the enhancement effect on cholesterol outflow of MGF and T0. Mechanically, MGF and T0 promotes LXRα and mTOR/AMPK signaling cascade in macrophage, and promotes AMPK signaling cascade in hepatocyte, leading to lipid metabolic homeostasis. CONCLUSIONS: Altogether, our findings reveal that MGF and T0 engages in AS therapy without side effects by activating AMPK-dependent autophagy to promote macrophage cholesterol efflux, and MGF might serve as a natural compound to assist T0 in AS via targeting autophagy.

4.
Adv Healthc Mater ; 13(7): e2302736, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38061349

ABSTRACT

Failure to reconstruct the Lactobacillus microbiota is the major reason for the recurrence of vaginal infection. However, most empiric therapies focus on the efficacy of pathogen elimination but do not sufficiently consider the viability of Lactobacillus. Herein, cotton fibers with a lactic acid-like surface (LC) are fabricated by NaIO4 oxidation and L-isoserine grafting. The lactic acid analog chain ends and imine structure of LC can penetrate cell walls to cause protein cleavage in Escherichia coli and Candida albicans and inhibit vaginal pathogens. Meanwhile, the viability of Lactobacillus acidophilus is unaffected by the LC treatment, thus revealing a selective way to suppress pathogens as well as provide a positive route to re-establish protective microbiota in the vaginal tract. Moreover, LC has excellent properties such as good biosafety, antiadhesion, water absorption, and weight retention. The strategy proposed here not only is practical, but also provides insights into the treatment of vaginal infections.


Subject(s)
Lactobacillus , Microbiota , Female , Humans , Lactobacillus/metabolism , Lactic Acid , Cotton Fiber , Vagina/metabolism , Escherichia coli/metabolism
5.
Eur J Pharmacol ; 963: 176164, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37918500

ABSTRACT

Ulcerative colitis (UC) has been recognized as a chronic and relapsing inflammatory disease of the gastrointestinal tract. Clinically, aminosalicylates, immunosuppressants and biological agents are commonly used to treat UC at different stages of the disease. However, these drugs often have side effects. Here, we investigated the anti-UC activity of Anemoside B4 (AB4) in mice with dextran sulfate sodium (DSS) induced colitis. Colon tissues, serum, and colonic contents were collected for assessment of intestinal barrier function, inflammatory cytokines production and microenvironment of intestinal microbiota. Results showed that AB4 alleviated colon shortening, weight lossing and histopathological damage in DSS-induced mice. In addition, we demonstrated both in vivo and in vitro that AB4 remarkably ameliorated colonic inflammation through suppressing NLRP3 pathway. Moreover, AB4 strengthened the intestinal epithelial barrier by regulating myosin light chain kinase (MLCK)-phosphorylated myosin light chain 2 (pMLC2) signaling pathway. Furthermore, we performed 16 S rRNA gene sequencing and fecal microbiome transplantation (FMT) experiments to demonstrate that AB4 alleviated colitis through regulating dysbiosis of intestinal microbiota. These results revealed that AB4 effectively ameliorate experimental UC mainly through regulating MLCK/pMLC2 pathway, NLRP3 pathway and dysbiosis of microbiota, provided new insights into the development of novel anti-UC drugs.


Subject(s)
Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Animals , Mice , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Dextran Sulfate/toxicity , Dysbiosis , Colitis/chemically induced , Colitis/drug therapy , Colon , Disease Models, Animal , Mice, Inbred C57BL
6.
Fitoterapia ; 172: 105783, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38110127

ABSTRACT

Eight nitrogenous compounds including five undescribed ones, aeswilnitrousol A (1), aeswilnitrousosides BD (2-4), and 6-(2-hydroxy-3-methylbutylamino)-8-oxoadenine (5) were isolated from the seeds of Aesculus wilsonii. Their structures and absolute configurations were established based on spectroscopic determination, calculated electronic circular dichroism (ECD) analysis, as well as chemical reaction methods. Among the three known compounds, 7 and 8 were obtained from the Aesculus genus for the first time, and 6 was gained from this plant initially. The 13C NMR data of 7 and 8 were reported for the first time. Moreover, the inhibitory effect of all the isolates against LPS-induced nitric oxide production in RAW264.7 macrophages was evaluated. As a result, compounds 2 and 8 exhibited anti-inflammatory activity in a concentration-dependent manner at 10, 25, and 50 µM.


Subject(s)
Aesculus , Molecular Structure , Aesculus/chemistry , Nitrogen Compounds/analysis , Anti-Inflammatory Agents/pharmacology , Seeds/chemistry , Nitric Oxide
7.
Int J Mol Sci ; 24(24)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38139367

ABSTRACT

Ulcerative colitis, an immune-mediated inflammatory disease of the gastrointestinal tract, places a significant financial burden on patients and the healthcare system. Recently, reviews of the pomegranate and the abundant medicinal applications of its ellagitannins, as well as its pharmacological action, phytochemicals, metabolism, and pharmacokinetics, have been completed. However, summaries on their anti-ulcerative colitis effects are lacking. Numerous preclinical animal investigations and clinical human trial reports demonstrated the specific therapeutic effects of pomegranate and the effect of its ellagitannins against ulcerative colitis. According to the literature collected by Sci-finder and PubMed databases over the past 20 years, this is the first review that has compiled references regarding how the rich ellagitannins found in pomegranate have altered the ulcerative colitis. It was suggested that the various parts of pomegranates and their rich ellagitannins (especially their primary components, punicalagin, and ellagic acid) can inhibit oxidant and inflammatory processes, regulate the intestinal barrier and flora, and provide an anti-ulcerative colitis resource through dietary management.


Subject(s)
Colitis, Ulcerative , Lythraceae , Pomegranate , Animals , Humans , Colitis, Ulcerative/drug therapy , Hydrolyzable Tannins/pharmacology , Hydrolyzable Tannins/therapeutic use , Fruit/chemistry
8.
J Org Chem ; 88(23): 16155-16166, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37975833

ABSTRACT

A variety of spirooxindole-1,2-oxazinan-5-one derivatives were prepared in moderate to excellent yields through 2,2,2-trifluoroethanol (TFE)-promoted [3 + 3] cycloaddition of N-vinyl oxindole nitrones with oxyallyl cations generated from α-tosyloxy ketones under mild reaction conditions. Mechanistic studies revealed that [3 + 3] cycloaddition might involve two possible reaction pathways, including direct [3 + 3] cycloaddition of N-vinyl oxindole ntirones with oxyallyl cations, or the addition of TFE to N-vinyl oxindole nitrones, sequential addition to oxyallyl cations, elimination, and cyclization. The present method features mild reaction conditions, broad substrate scope, good functional group tolerance, easy gram scalable preparation, and new applications of TFE.

9.
Fitoterapia ; 171: 105694, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37778669

ABSTRACT

Twenty-four aromatic compounds including five novel ones, dolilabphenosides A (1), B1 (2), B2 (3), C1 (4), and C2 (5) were obtained from the seeds of Dolichos lablab L. Their structures were established based on spectroscopic analyses and chemical reactions. Among the known compounds, 9, 10, 14, 17, 19, and 22-24 were gained from the family Leguminosae for the first time, and 6, 8, 11-13, 15, 16, 18, 20, as well as 21 were firstly identified from Dolichos genus. Moreover, the inhibitory effect evaluation of all the isolates against LPS-induced nitric oxide (NO) production in RAW264.7 macrophages suggested that compounds 1-3, 6, 7, 11-15, 17, 20, 21, 23, 24 exhibited anti-inflammatory activity in a concentration-dependent manner. Moreover, the novel compounds, dolilabphenosides A (1), B1 (2), B2 (3) were found to inhibit the secretion of inflammatory cytokine IL-1ß.


Subject(s)
Dolichos , Fabaceae , Dolichos/chemistry , Molecular Structure , Anti-Inflammatory Agents/pharmacology , Seeds/chemistry
10.
Foods ; 12(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37835218

ABSTRACT

Cider flavor has a very important impact on the quality. Solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) combined with gas chromatography-ion mobility spectrometry (GC-IMS) tested different kinds of non-Saccharomyces yeasts and Saccharomyces cerevisiae (S. cerevisiae) co-inoculated for the fermentation of cider to determine differences in aroma material, and the determination of odor activity value (OAV) is applied less frequently in research. Through Rhodotorula mucilaginosa, Debaryomyces hansenii, Zygosaccharomyces bailii, and Kluyveromyces Marxianus, four different strains of non-Saccharomyces yeast fermented cider, and it was found that, in both the chemical composition and flavor of material things, compared with monoculture-fermented cider using S. cerevisiae, all differences were significant. Co-inoculated fermentation significantly improved the flavor and taste of cider. As in the volatile compounds of OVA > 1, octanoic acid (Sc 633.88 µg/L, co-inoculation fermented group 955.49 µg/L) provides vegetable cheese fragrance and decanoic acid, ethyl ester (Sc 683.19 µg/L, co-inoculation fermented group 694.98 µg/L) a creamy fruity fragrance, etc., and the average content increased after co-inoculated fermentation. Phenylethyl alcohol, which can produce a rose scent, was relatively abundant in cider samples and varied greatly among the groups. Moreover, the contents of ethyl lactate and 1-butanol in the Sc+Rm (ciders fermented by S. cerevisiae and R. mucilaginosa) were the highest of all of the cider samples. Different types of non-Saccharomyces yeast produced cider with different flavor characteristics. This study demonstrates that different species of non-Saccharomyces yeast do have an important impact on the characteristics of cider and that co-inoculation with non-Saccharomyces yeast and S. cerevisiae for cider fermentation may be a strategy to improve the flavor of cider.

11.
Int J Biol Sci ; 19(13): 4311-4326, 2023.
Article in English | MEDLINE | ID: mdl-37705736

ABSTRACT

Gliomas develop in unique and complicated environments that nourish tumor cells. The tumor microenvironment (TME) of gliomas comprises heterogeneous cells, including brain-resident cells, immune cells, and vascular cells. Reciprocal interactions among these cells are involved in the evolution of the TME. Moreover, the study of attractive therapeutic strategies that target the TME is transitioning from basic research to the clinic. Mouse models are indispensable tools for dissecting the processes and mechanisms leading to TME evolution. In this review, we overview the paradoxical roles of the TME, as well as the recent progress of mouse models in TME research. Finally, we summarize recent advances in TME-targeting therapeutic strategies.


Subject(s)
Glioma , Tumor Microenvironment , Animals , Mice , Tumor Microenvironment/genetics , Glioma/genetics , Disease Models, Animal
12.
Adv Mater ; : e2305940, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37469232

ABSTRACT

The discovery of antibiotics has saved millions of lives, but the emergence of antibiotic-resistant bacteria has become another problem in modern medicine. To avoid or reduce the overuse of antibiotics in antibacterial treatments, stimuli-responsive materials, pathogen-targeting nanoparticles, immunogenic nano-toxoids, and biomimetic materials are being developed to make sterilization better and smarter than conventional therapies. The common goal of smart antibacterial materials (SAMs) is to increase the antibiotic efficacy or function via an antibacterial mechanism different from that of antibiotics in order to increase the antibacterial and biological properties while reducing the risk of drug resistance. The research and development of SAMs are increasingly interdisciplinary because new designs require the knowledge of different fields and input/collaboration from scientists in different fields. A good understanding of energy conversion in materials, physiological characteristics in cells and bacteria, and bactericidal structures and components in nature are expected to promote the development of SAMs. In this review, the importance of multidisciplinary insights for SAMs is emphasized, and the latest advances in SAMs are categorized and discussed according to the pertinent disciplines including materials science, physiology, and biomimicry.

13.
J Nat Med ; 77(4): 867-879, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37433989

ABSTRACT

Hyperuricemia is an independent risk factor for chronic kidney disease. We have previously showed the uric-acid-lowering effect of Eurycoma longifolia Jack, yet the renal protective effect and mechanism of E. longifolia remain obscure. The mouse model of hyperuricemic nephropathy was induced by adenine combined with potassium oxonate in male C57BL/6 J mice. E. Longifolia alkaloid components could reduce the level of serum uric acid by regulating the expression of hepatic phosphoribosyl pyrophosphate synthase (PRPS), hypoxanthine-guanine phosphoribosyl transferase (HPRT), and renal urate transporter organic anion transporter 1 (OAT1) and ATP-binding box subfamily G member 2 (ABCG2) in HN mice. Additionally, E. Longifolia alkaloid components alleviated renal injury and function caused by hyperuricemia, which was characterized by improving renal histopathology, reducing urea nitrogen and creatinine levels. E. Longifolia alkaloid components treatment could reduce the secretion of pro-inflammatory factors by inhibiting the activation of NF-κB and NLRP3 inflammatory signaling pathways, including tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin-1 ß (IL-1ß), and regulated activated normal T cell expression and secretion proteins (RANTES). Meanwhile, E. longifolia alkaloid components improved renal fibrosis, inhibited the transformation of calcium-dependent cell adhesion molecule E (E-cadherin) to α-smooth muscle actin (α-SMA) transformation, and decreased collagen 1 expression in HN mice.


Subject(s)
Eurycoma , Hyperuricemia , Male , Mice , Animals , Hyperuricemia/chemically induced , Hyperuricemia/drug therapy , Uric Acid , Mice, Inbred C57BL , Kidney/metabolism , Kidney/pathology , Inflammation/metabolism
14.
Mater Horiz ; 10(5): 1884, 2023 May 09.
Article in English | MEDLINE | ID: mdl-36880504

ABSTRACT

Correction for 'Tuning the arrangement of lamellar nanostructures: achieving the dual function of physically killing bacteria and promoting osteogenesis' by Shi Mo et al., Mater. Horiz., 2023, 10, 881-888, https://doi.org/10.1039/d2mh01147f.

15.
Research (Wash D C) ; 6: 0074, 2023.
Article in English | MEDLINE | ID: mdl-36930769

ABSTRACT

The power generated by flexible wearable devices (FWDs) is normally insufficient to eradicate bacteria, and many conventional antibacterial strategies are also not suitable for flexible and wearable applications because of the strict mechanical and electrical requirements. Here, polypyrrole (PPy), a conductive polymer with a high mass density, is used to form a nanostructured surface on FWDs for antibacterial purposes. The conductive films with PPy nanorods (PNRs) are found to sterilize 98.2 ± 1.6% of Staphylococcus aureus and 99.6 ± 0.2% of Escherichia coli upon mild electrification (1 V). Bacteria killing stems from membrane stress produced by the PNRs and membrane depolarization caused by electrical neutralization. Additionally, the PNR films exhibit excellent biosafety and electrical stability. The results represent pioneering work in fabricating antibacterial components for FWDs by comprehensively taking into consideration the required conductivity, mechanical properties, and biosafety.

16.
Adv Mater ; 35(19): e2212315, 2023 May.
Article in English | MEDLINE | ID: mdl-36738179

ABSTRACT

Physical disruption is an important antibacterial means as it is lethal to bacteria without spurring antimicrobial resistance. However, it is very challenging to establish a quantifiable relationship between antibacterial efficacy and physical interactions such as mechanical and electrical forces. Herein, titanium nitride (TN) nanowires with adjustable orientations and capacitances are prepared to exert gradient electro-mechanical forces on bacteria. While vertical nanowires show the strongest mechanical force resulting in an antibacterial efficiency of 0.62 log reduction (vs 0.22 for tiled and 0.36 for inclined nanowires, respectively), the addition of electrical charges maximizes the electro-mechanical interactions and elevates the antibacterial efficacy to more than 3 log reduction. Biophysical and biochemical analyses indicate that electrostatic attraction by electrical charge narrows the interface. The electro-mechanical intervention more easily stiffens and rips the bacteria membrane, disturbing the electron balance and generating intracellular oxidative stress. The antibacterial ability is maintained in vivo and bacteria-challenged rats are protected from serious infection. The physical bacteria-killing process demonstrated here can be controlled by adjusting the electro-mechanical interactions. Overall, these results revealed important principles for rationally designing high-performance antibacterial interfaces for clinical applications.


Subject(s)
Nanowires , Nanowires/chemistry , Nanowires/ultrastructure , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Electrons , Intracellular Space , Oxidative Stress , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Animals , Rats
17.
Mater Horiz ; 10(3): 881-888, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36537031

ABSTRACT

Bacteria killing behavior based on physical effects is preferred for biomedical implants because of the negligible associated side effects. However, our current understanding of the antibacterial activity of nanostructures remains limited and, in practice, nanoarchitectures that are created on orthopedics should also promote osteogenesis simultaneously. In this study, tilted and vertical nanolamellar structures are fabricated on semi-crystalline polyether-ether-ketone (PEEK) via argon plasma treatment with or without pre-annealing. The two types of nanolamellae can physically kill the bacteria that come into contact with them, but the antibacterial mechanisms between the two are different. Specifically, the sharp edges of the vertically aligned nanolamellae can penetrate and damage the bacterial membrane, whereas bacteria are stuck on the tilted nanostructures and are stretched, leading to eventual destruction. The tilted nanolamellae are more desirable than the vertically aligned ones from the perspective of peri-implant bone regeneration. Our study not only reveals the role of the arrangement of nanostructures in orthopedic applications but also provides new information about different mechanisms of physical antibacterial activity.


Subject(s)
Nanostructures , Osteogenesis , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria
18.
Adv Healthc Mater ; 12(16): e2202073, 2023 06.
Article in English | MEDLINE | ID: mdl-36254817

ABSTRACT

Emergence of antibiotic-resistance pathogens has caused serious health issues and if the current trend is to continue, treatment of the infection will become complicated and even unsuccessful due to new antimicrobial resistance (AMR). Therefore, there is a global drive to identify new methods to treat infection and develop better antibacterial materials and therapy. Although new and more potent antibiotics have aided the fight against microbes, they only offer a temporary solution because future bacteria strains may become resistant to these antibiotics and drugs. Recently, application of non-biological methods such as, electrical currents and photothermal/dynamic therapies to kill bacteria, reveal new approaches to design antimicrobial biomaterials, as complications stemming from drug-resistant bacteria can be obviated. Furthermore, recent research has focused on mimicking the surface patterns on plants and insects such as lotus leaves and dragonfly wings. Bio-inspired micro/nano patterns have been replicated on a variety of biomaterials to improve the bacterial resistance and other properties with good success. This is an exciting research area with immense practical and clinical potentials. In this review, recent advances in the application of chemical/biological approaches to combat bacterial infection and AMR are summarized and the related mechanisms are discussed.


Subject(s)
Anti-Infective Agents , Bacterial Infections , Odonata , Animals , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , Bacterial Infections/drug therapy
19.
Microb Cell Fact ; 21(1): 266, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36539761

ABSTRACT

BACKGROUND: Genetic modifications in Bacillus subtilis have allowed the conversion of myo-inositol into scyllo-inositol, which is proposed as a therapeutic agent for Alzheimer's disease. This conversion comprises two reactions catalyzed by two distinct inositol dehydrogenases, IolG and IolW. The IolW-mediated reaction requires the intracellular regeneration of NADPH, and there appears to be a limit to the endogenous supply of NADPH, which may be one of the rate-determining factors for the conversion of inositol. The primary mechanism of NADPH regeneration in this bacterium remains unclear. RESULTS: The gdh gene of B. subtilis encodes a sporulation-specific glucose dehydrogenase that can use NADP+ as a cofactor. When gdh was modified to be constitutively expressed, the intracellular NADPH level was elevated, increasing the conversion of inositol. In addition, the bacterial luciferase derived from Photorhabdus luminescens became more luminescent in cells in liquid culture and colonies on culture plates. CONCLUSION: The results indicated that the luminescence of luciferase was representative of intracellular NADPH levels. Luciferase can therefore be employed to screen for mutations in genes involved in NADPH regeneration in B. subtilis, and artificial manipulation to enhance NADPH regeneration can promote the production of substances such as scyllo-inositol.


Subject(s)
Bacillus subtilis , Glucose 1-Dehydrogenase , Glucose 1-Dehydrogenase/genetics , NADP , Bacillus subtilis/genetics , Luminescence , Inositol , Luciferases
20.
Int J Mol Sci ; 23(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36361652

ABSTRACT

Diabetic kidney disease (DKD) is a common and devastating complication in diabetic patients, which is recognized as a large and growing problem leading to end-stage kidney disease. As dietary-mediated therapies are gradually becoming more acceptable to patients with DKD, we planned to find active compounds on preventing DKD progression from dietary material. The present paper reports the renoprotective properties and underlying mechanisms of ginsenoside compound K (CK), a major metabolite in serum after oral administration of ginseng. CK supplementation for 16 weeks could improve urine microalbumin, the ratio of urinary albumin/creatinine and renal morphological abnormal changes in db/db mice. In addition, CK supplementation reshaped the gut microbiota by decreasing the contents of Bacteroides and Paraprevotella and increasing the contents of Lactobacillu and Akkermansia at the genus level, as well as reduced histidine-derived microbial metabolite imidazole propionate (IMP) in the serum. We first found that IMP played a significant role in the progression of DKD through activating toll-like receptor 4 (TLR4). We also confirmed CK supplementation can down-regulate IMP-induced protein expression of the TLR4 signaling pathway in vivo and in vitro. This study suggests that dietary CK could offer a better health benefit in the early intervention of DKD. From a nutrition perspective, CK or dietary material containing CK can possibly be developed as new adjuvant therapy products for DKD.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Animals , Mice , Diabetes Mellitus/metabolism , Diabetic Nephropathies/metabolism , Kidney/metabolism , Toll-Like Receptor 4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...