Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Pattern Anal Mach Intell ; 46(4): 2299-2315, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37966933

ABSTRACT

This paper introduces a simple yet powerful channel augmentation for visible-infrared re-identification. Most existing augmentation operations designed for single-modality visible images do not fully consider the imagery properties in visible to infrared matching. Our basic idea is to homogeneously generate color-irrelevant images by randomly exchanging the color channels. It can be seamlessly integrated into existing augmentation operations, consistently improving the robustness against color variations. For cross-modality metric learning, we design an enhanced channel-mixed learning strategy to simultaneously handle the intra- and cross-modality variations with squared difference for stronger discriminability. Besides, a weak-and-strong augmentation joint learning strategy is further developed to explicitly optimize the outputs of augmented images, which mutually integrates the channel augmented images (strong) and the general augmentation operations (weak) with consistency regularization. Furthermore, by conducting the label association between the channel augmented images and infrared modalities with modality-specific clustering, a simple yet effective unsupervised learning baseline is designed, which significantly outperforms existing unsupervised single-modality solutions. Extensive experiments with insightful analysis on two visible-infrared recognition tasks show that the proposed strategies consistently improve the accuracy. Without auxiliary information, the Rank-1/mAP achieves 71.48%/68.15% on the large-scale SYSU-MM01 dataset.

2.
Sensors (Basel) ; 20(15)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751687

ABSTRACT

This paper proposes a robust fabric defect detection method, based on the improved RefineDet. This is done using the strong object localization ability and good generalization of the object detection model. Firstly, the method uses RefineDet as the base model, inheriting the advantages of the two-stage and one-stage detectors and can efficiently and quickly detect defect objects. Secondly, we design an improved head structure based on the Full Convolutional Channel Attention (FCCA) block and the Bottom-up Path Augmentation Transfer Connection Block (BA-TCB), which can improve the defect localization accuracy of the method. Finally, the proposed method applies many general optimization methods, such as attention mechanism, DIoU-NMS, and cosine annealing scheduler, and verifies the effectiveness of these optimization methods in the fabric defect localization task. Experimental results show that the proposed method is suitable for the defect detection of fabric images with unpattern background, regular patterns, and irregular patterns.

SELECTION OF CITATIONS
SEARCH DETAIL
...