Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Hortic ; 4(1): 6, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38373989

ABSTRACT

Putrescine plays a role in superficial scald development during the cold storage of pear fruit. However, the molecular mechanism behind this phenomenon has not been un-fully clarified until recently. In this study, a conjoint analysis of metabolites and gene expression profiles in the putrescine-metabolic pathway of P. bretschneideri Rehd. fruit followed by experimental validation revealed that PbrADC1, forming a homodimer in the chloroplast, was involved in putrescine biosynthesis and thus fruit chilling resistance. Additionally, the substrate-binding residue Cys546 in PbrADC1, whose activity was modified by H2O2, played a crucial role in arginine decarboxylation into agmatine. Through a combined analysis of the distribution of cis-acting elements in the PbrADC1 promoter as well as the expression profiles of related transcription factors (TFs), several TFs were identified as upstream regulators of PbrADC1 gene. Further investigation revealed that the nuclear PbrWRKY62 could directly bind to the W-box elements in the PbrADC1 promoter, activate its expression, enhance putrescine accumulation, and thus increase fruit chilling tolerance. In conclusion, our results suggest that the PbrWRKY62-PbrADC1 module is involved in the development of superficial scald in P. bretschneideri Rehd. fruit via regulating putrescine biosynthesis. Consequently, these findings could serve as valuable genetic resources for breeding scald-resistant pear fruit.

2.
Colloids Surf B Biointerfaces ; 204: 111779, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33901810

ABSTRACT

Native carbonic anhydrase (CA) has been widely used in several different applications due to its catalytic function in the interconversion of carbon dioxide (CO2) and carbonic acid. However, subject to its stability and recyclability, native CA often deactivates when in harsh environments, which restricts its applications in the commercial market. Maintaining the stability and high catalytic activity of CA is challenging. Immobilization provides an effective route that can improve enzymatic stability. Through the interaction of covalent bonds and van der Waals forces, water-soluble CA can be combined with various insoluble supports to form water-insoluble immobilized CA so that CA stability and utilization can be greatly improved. However, if the immobilization method or immobilization condition is not suitable, it often leads to a decrease in CA activity, reducing the application effects on CO2 conversion. In this review, we discuss existing immobilization methods and applications of immobilized CA in the environmental field, such as the mineralization of carbon dioxide and multienzyme cascade catalysis based on CA. Additionally, prospects in current development are outlined. Because of the many outstanding and superior properties after immobilization, CA is likely to be used in a wide variety of scientific and technical areas in the future.


Subject(s)
Carbonic Anhydrases , Carbon Dioxide , Carbonic Anhydrases/metabolism , Enzyme Stability , Enzymes, Immobilized/metabolism , Water
3.
J Agric Food Chem ; 66(33): 8772-8782, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30074786

ABSTRACT

In this study, five genes involved in malic acid (MA) metabolism, including a cytosolic NAD-dependent malate dehydrogenase gene ( cyNAD-MDH), a cytosolic NADP-dependent malic enzyme gene ( cyNADP-ME), two vacuolar H+-ATPase genes ( vVAtp1 and vVAtp2), and one vacuolar inorganic pyrophosphatase gene ( vVPp), were characterized from pear fruit based on bioinformatic and experimental analysis. Their expression profile in "Housui" pear was tissue-specific, and their expression patterns during fruit development were diverse. During "Housui" pear storage, MA content decreased, which was associated with the downregulated transcripts of MA metabolism-related genes and cyNAD-MDH activity and higher cyNADP-ME activity. The response of MA metabolism to postharvest 1.5 µL L-1 1-MCP fumigation and 0.5 mL L-1 ethrel dipping was distinct: 1-MCP fumigation upregulated gene expression and cyNAD-MDH activity and suppressed cyNADP-ME activity, and thus maintained higher MA abundance when compared with those in the control; on the other hand, an opposite behavior was observed in ethrel-treated fruit.


Subject(s)
Cyclopropanes/pharmacology , Malates/metabolism , Organophosphorus Compounds/pharmacology , Plant Proteins/genetics , Pyrus/drug effects , Fruit/drug effects , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Gene Expression Regulation, Plant/drug effects , Inorganic Pyrophosphatase/genetics , Inorganic Pyrophosphatase/metabolism , Malate Dehydrogenase/genetics , Malate Dehydrogenase/metabolism , Plant Proteins/metabolism , Pyrus/genetics , Pyrus/growth & development , Pyrus/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...