Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 207: 108428, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38364633

ABSTRACT

Manganese (Mn) is one of the essential elements for plant growth and is involved in the process of photosynthesis and seed germination. Herein, we applied two Mn-based nanoparticles, MnO2 and Mn3O4, to the soil to investigate their effects on radish growth, antioxidant system, and nutrients. The radish plant height after treatment with 10 mg/kg of MnO2 and Mn3O4 NPs were increased, compare to the control. In radish's shoot, MnO2 NPs at high concentrations (100 mg/kg) increased MDA activity by 58 % compared to the control group, while exposure to Mn3O4 NPs at the same concentration decreased MDA activity by 14 %. The nutrient content of radishes, such as soluble sugar and vitamin C, was improved. Moreover, single particle inductively coupled plasma mass spectrometry (SP ICP-MS) was used to understand the patterns of migration of Mn-based NPs in radish and subsequent impact on nutrients. We found that Mn-based NPs accumulated mainly in the roots of radish. Interestingly, the accumulation characteristics of MnO2 NPs and Mn3O4 NPs were different. MnO2 NPs accumulated more in radish leaves than in fruits, while the accumulation of Mn3O4 NPs gradually decreased from roots to leaves. Finally, we determined the mineral element content of the leaves, fruits, and roots of radish, and found that the uptake of main metallic mineral elements (e.g. Cu, Fe, Mg, Zn, Na, K) was inhibited by the application of Mn-based NPs. These findings underscore the importance of considering species and multifaceted impacts of Mn-based NPs as nanofertilizers for their wide application in agriculture.


Subject(s)
Nanoparticles , Raphanus , Raphanus/chemistry , Manganese/pharmacology , Manganese Compounds/pharmacology , Oxides/pharmacology , Minerals/pharmacology
2.
J Agric Food Chem ; 71(51): 20405-20418, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38032362

ABSTRACT

Global warming has posed significant pressure on agricultural productivity. The resulting abiotic stresses from high temperatures and drought have become serious threats to plants and subsequent global food security. Applying nanomaterials in agriculture can balance the plant's oxidant level and can also regulate phytohormone levels and thus maintain normal plant growth under heat and drought stresses. Nanomaterials can activate and regulate specific stress-related genes, which in turn increase the activity of heat shock protein and aquaporin to enable plants' resistance against abiotic stresses. This review aims to provide a current understanding of nanotechnology-enhanced plant tolerance to heat and drought stress. Molecular mechanisms are explored to see how nanomaterials can alleviate abiotic stresses on plants. In comparison with organic molecules, nanomaterials offer the advantages of targeted transportation and slow release. These advantages help the nanomaterials in mitigating drought and heat stress in plants.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Plants/genetics , Heat-Shock Response , Stress, Physiological/genetics
3.
NanoImpact ; 28: 100420, 2022 10.
Article in English | MEDLINE | ID: mdl-36038133

ABSTRACT

People's desire for food has never slowed, despite the deterioration of the global agricultural environment and the threat to food security. People rely on agrochemicals to ensure normal crop growth and to relieve the existing demand pressure. Phytopathogens have acquired resistance to traditional pesticides as a result of pesticdes' abuse. Compared with traditional formulations, nano-pesticides have superior antimicrobial performance and are environmentally friendly. Zn-based nanoparticles (NPs) have shown their potential as strong antipathogen activity. However, their full potential has not been demonstrated yet. Here, we analyzed the prerequisites for the use of Zn-based NPs as nano-pesticides in agriculture including both intrinsic properties of the materials and environmental conditions. We also summarized the mechanisms of Zn-based NPs against phytopathogens including direct and indirect strategies to alleviate plant disease stress. Finally, the current challenges and future directions are highlighted to advance our understanding of this field and guide future studies.


Subject(s)
Pesticides , Humans , Zinc/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...