Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Medicine (Baltimore) ; 101(24): e29402, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35713446

ABSTRACT

ABSTRACT: Katanin subunits p60 and p80 are involved in microtubule-mediated cytoskeletal organization during cell division. Their aberrant expression has been found in prostate, breast, and non-small cell lung (NSCLC) cancers. It has recently been reported that compared with adjacent papillary thyroid carcinoma (PTC) tissues, both are highly expressed in tumor tissues. Here, we investigated whether katanin subunits p60 and p80 can be used as potential biomarkers for PTC to distinguish nodular goiter (NG).Immunohistochemistry was performed to investigate the expression of katanin subunits p60 and p80 in the tissues of 97 cases of PTC and NG. This cohort included 87 cases with PTC (74 classical or conventional (CPTC) and 13 follicular (FVPTC) variants) and 10 cases with NG.We found that katanin subunits p60 and p80 were expressed in PTC, but not in NG. The cutoff values of katanin p60 and p80 for PTC were 22.43% and 0.83%, respectively. The katanin subunit p60 was significantly associated with lymph node metastasis. Katanin subunit p80 was more highly expressed in CPTC than in FVPTC. The expression of the katanin subunit p60 was positively correlated with the expression of katanin p80 in PTC. Importantly, we found that overexpression of katanin p60 increased the expression of katanin p80 in a human papillary thyroid carcinoma KTC-1 cell line, which further supports the existence of katanin p60 and p80 feedback loops.Our results indicate that katanin subunits p60 and p80 may be used as potential PTC biomarkers to distinguish NG and may be novel therapeutic targets for PTC.


Subject(s)
Goiter, Nodular , Thyroid Neoplasms , Adenosine Triphosphatases , Biomarkers , Goiter, Nodular/diagnosis , Humans , Katanin/metabolism , Male , Thyroid Cancer, Papillary/diagnosis , Thyroid Neoplasms/diagnosis
2.
Proc Math Phys Eng Sci ; 472(2187): 20150728, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27118914

ABSTRACT

The aim of this paper is to study the dynamic characteristics of micromechanical rectangular plates used as sensing elements in a viscous compressible fluid. A novel modelling procedure for the plate-fluid interaction problem is developed on the basis of linearized Navier-Stokes equations and no-slip conditions. Analytical expression for the fluid-loading impedance is obtained using a double Fourier transform approach. This modelling work provides us an analytical means to study the effects of inertial loading, acoustic radiation and viscous dissipation of the fluid acting on the vibration of microplates. The numerical simulation is conducted on microplates with different boundary conditions and fluids with different viscosities. The simulation results reveal that the acoustic radiation dominates the damping mechanism of the submerged microplates. It is also proved that microplates offer better sensitivities (Q-factors) than the conventional beam type microcantilevers being mass sensing platforms in a viscous fluid environment. The frequency response features of microplates under highly viscous fluid loading are studied using the present model. The dynamics of the microplates with all edges clamped are less influenced by the highly viscous dissipation of the fluid than the microplates with other types of boundary conditions.

3.
Biomed Microdevices ; 14(1): 83-93, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21915644

ABSTRACT

A novel biosensing system based on a micromachined rectangular silicon membrane is proposed and investigated in this paper. A distributive sensing scheme is designed to monitor the dynamics of the sensing structure. An artificial neural network is used to process the measured data and to identify cell presence and density. Without specifying any particular bio-application, the investigation is mainly concentrated on the performance testing of this kind of biosensor as a general biosensing platform. The biosensing experiments on the microfabricated membranes involve seeding different cell densities onto the sensing surface of membrane, and measuring the corresponding dynamics information of each tested silicon membrane in the form of a series of frequency response functions (FRFs). All of those experiments are carried out in cell culture medium to simulate a practical working environment. The EA.hy 926 endothelial cell lines are chosen in this paper for the bio-experiments. The EA.hy 926 endothelial cell lines represent a particular class of biological particles that have irregular shapes, non-uniform density and uncertain growth behaviour, which are difficult to monitor using the traditional biosensors. The final predicted results reveal that the methodology of a neural-network based algorithm to perform the feature identification of cells from distributive sensory measurement has great potential in biosensing applications.


Subject(s)
Biosensing Techniques/instrumentation , Neural Networks, Computer , Silicon/chemistry , Algorithms , Biosensing Techniques/methods , Cell Count , Cell Line , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...