Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 21(11)2021 May 24.
Article in English | MEDLINE | ID: mdl-34073867

ABSTRACT

Weeds are one of the most important factors affecting agricultural production. The waste and pollution of farmland ecological environment caused by full-coverage chemical herbicide spraying are becoming increasingly evident. With the continuous improvement in the agricultural production level, accurately distinguishing crops from weeds and achieving precise spraying only for weeds are important. However, precise spraying depends on accurately identifying and locating weeds and crops. In recent years, some scholars have used various computer vision methods to achieve this purpose. This review elaborates the two aspects of using traditional image-processing methods and deep learning-based methods to solve weed detection problems. It provides an overview of various methods for weed detection in recent years, analyzes the advantages and disadvantages of existing methods, and introduces several related plant leaves, weed datasets, and weeding machinery. Lastly, the problems and difficulties of the existing weed detection methods are analyzed, and the development trend of future research is prospected.

2.
Sensors (Basel) ; 21(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396255

ABSTRACT

Detection of weeds and crops is the key step for precision spraying using the spraying herbicide robot and precise fertilization for the agriculture machine in the field. On the basis of k-mean clustering image segmentation using color information and connected region analysis, a method combining multi feature fusion and support vector machine (SVM) was proposed to identify and detect the position of corn seedlings and weeds, to reduce the harm of weeds on corn growth, and to achieve accurate fertilization, thereby realizing precise weeding or fertilizing. First, the image dataset for weed and corn seedling classification in the corn seedling stage was established. Second, many different features of corn seedlings and weeds were extracted, and dimensionality was reduced by principal component analysis, including the histogram of oriented gradient feature, rotation invariant local binary pattern (LBP) feature, Hu invariant moment feature, Gabor feature, gray level co-occurrence matrix, and gray level-gradient co-occurrence matrix. Then, the classifier training based on SVM was conducted to obtain the recognition model for corn seedlings and weeds. The comprehensive recognition performance of single feature or different fusion strategies for six features is compared and analyzed, and the optimal feature fusion strategy is obtained. Finally, by utilizing the actual corn seedling field images, the proposed weed and corn seedling detection method effect was tested. LAB color space and K-means clustering were used to achieve image segmentation. Connected component analysis was adopted to remove small objects. The previously trained recognition model was utilized to identify and label each connected region to identify and detect weeds and corn seedlings. The experimental results showed that the fusion feature combination of rotation invariant LBP feature and gray level-gradient co-occurrence matrix based on SVM classifier obtained the highest classification accuracy and accurately detected all kinds of weeds and corn seedlings. It provided information on weed and crop positions to the spraying herbicide robot for accurate spraying or to the precise fertilization machine for accurate fertilizing.


Subject(s)
Seedlings , Support Vector Machine , Zea mays , Crops, Agricultural , Plant Weeds
SELECTION OF CITATIONS
SEARCH DETAIL