Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
1.
Sensors (Basel) ; 24(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38894065

ABSTRACT

A 9-10-bit adjustable and energy-efficient switching scheme for SAR ADC with one-LSB common-mode voltage variation is proposed. Based on capacitor-splitting technology and common-mode conversion techniques, the proposed switching scheme reduces the DAC switching energy by 96.41% compared to the conventional scheme. The low complexity and the one-LSB common-mode voltage offset of this scheme benefit from the simultaneous switching of the reference voltages of the capacitors corresponding to the positive array and the negative array throughout the entire reference voltage switching process, and the reference voltage of each capacitor in the scheme does not change more than two voltages. The post-layout result shows that the ADC achieves the 54.96 dB SNDR, the 61.73 dB SFDR, and the 0.67 µw power consumption with the 10-bit mode and the 48.33 dB SNDR, the 54.17 dB SFDR, and the 0.47 µw power consumption with the 9-bit mode in a 180 nm process with a 100 kS/s sampling frequency.

2.
Nat Commun ; 15(1): 4990, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862530

ABSTRACT

Laser-based light detection and ranging (LIDAR) offers a powerful tool to real-timely map spatial information with exceptional accuracy and owns various applications ranging from industrial manufacturing, and remote sensing, to airborne and in-vehicle missions. Over the past two decades, the rapid advancements of optical frequency combs have ushered in a new era for LIDAR, promoting measurement precision to quantum noise limited level. For comb LIDAR systems, to further improve the comprehensive performances and reconcile inherent conflicts between speed, accuracy, and ambiguity range, innovative demodulation strategies become crucial. Here we report a dispersive Fourier transform (DFT) based LIDAR method utilizing phase-locked Vernier dual soliton laser combs. We demonstrate that after in-line pulse stretching, the delay of the flying pulses can be identified via the DFT-based spectral interferometry instead of temporal interferometry or pulse reconstruction. This enables absolute distance measurements with precision starting from 262 nm in single shot, to 2.8 nm after averaging 1.5 ms, in a non-ambiguity range over 1.7 km. Furthermore, our DFT-based LIDAR method distinctly demonstrates an ability to completely eliminate dead zones. Such an integration of frequency-resolved ultrafast analysis and dual-comb ranging technology may pave a way for the design of future LIDAR systems.

3.
Adv Mater ; : e2406594, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940263

ABSTRACT

Sulfurized polyacrylonitrile (SPAN) recently emerges as a promising cathode for high-energy lithium (Li) metal batteries owing to its high capacity, extended cycle life, and liberty from costly transition metals. As the high capacities of both Li metal and SPAN lead to relatively small electrode weights, the weight and specific energy density of Li/SPAN batteries are particularly sensitive to electrolyte weight, highlighting the importance of minimizing electrolyte density. Besides, the large volume changes of Li metal anode and SPAN cathode require inorganic-rich interphases that can guarantee intactness and protectivity throughout long cycles. This work addresses these crucial aspects with an electrolyte design where lightweight dibutyl ether (DBE) is used as a diluent for concentrated lithium bis(fluorosulfonyl)imide (LiFSI)-triethyl phosphate (TEP) solution. The designed electrolyte (d = 1.04 g mL-1) is 40%-50% lighter than conventional localized high-concentration electrolytes (LHCEs), leading to 12%-20% extra energy density at the cell level. Besides, the use of DBE introduces substantial solvent-diluent affinity, resulting in a unique solvation structure with strengthened capability to form favorable anion-derived inorganic-rich interphases, minimize electrolyte consumption, and improve cell cyclability. The electrolyte also exhibits low volatility and offers good protection to both Li metal anode and SPAN cathode under thermal abuse.

4.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2776-2782, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812178

ABSTRACT

This study explore the molecular mechanism of the synergistic effect of Chinese Yam polysaccharides and nucleoside analogues(NAs) on hepatitis B virus(HBV) resistance. Different concentrations of Chinese Yam polysaccharide and entecavir were ad-ded to HepG2.2.15 cells. After the cytotoxicity was detected by cell counting kit-8(CCK-8), the optimal concentration and time of the two drugs to inhibit HepG2.2.15 cells were screened out. They were divided into control group, Chinese Yam polysaccharide group, entecavir group and combination drug group(Chinese Yam polysaccharide + entecavir). The drugs were added to HepG2.2.15 cells, ELISA was used to detect the effects of each group of drugs on the secretion of hepatitis B virus surface antigen(HBsAg) and hepatitis B virus e antigen(HBeAg) in cell supernatant, probe quantitative real-time PCR(probe qRT-PCR) was used to detect the effects of drugs on HBV-DNA in HepG2.2.15 cells, and Western blot was used to detect the effects of each group of drugs on the expression of p38 MAPK, p-p38 MAPK, NTCP proteins in HepG2.2.15 cells. The qRT-PCR was used to detect the effect of drugs on the expression of p38 MAPK and NTCP mRNA in HepG2.2.15 cells. The results showed that compared with control group, the concentrations of HBeAg and HBsAg in Chinese Yam polysaccharide group, entecavir group and combination group decreased(P<0.01 or P<0.001), and both of them inhibited HBV-DNA in HepG2.2.15 cells(P<0.01), and the HBV-DNA inhibition of HepG2.2.15 cells in the combination group was more obvious(P<0.001), and the protein expression levels of p-p38 MAPK and NTCP were significantly decreased(P<0.05 or P<0.01), the mRNA expression level of p38 MAPK increased, and the mRNA expression level of NTCP decreased(P<0.05 or P<0.01). To sum up, Chinese Yam polysaccharide can reduce the expression of NTCP protein and mRNA through p38 MAPK signaling pathway and cooperate with entecavir in anti-HBV.


Subject(s)
Antiviral Agents , Dioscorea , Hepatitis B virus , Polysaccharides , p38 Mitogen-Activated Protein Kinases , Humans , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Polysaccharides/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Hep G2 Cells , Antiviral Agents/pharmacology , Dioscorea/chemistry , Drug Synergism , Nucleosides/pharmacology , MAP Kinase Signaling System/drug effects , Hepatitis B Surface Antigens/metabolism , Hepatitis B Surface Antigens/genetics , Hepatitis B e Antigens/metabolism , Hepatitis B/drug therapy , Hepatitis B/virology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Guanine/analogs & derivatives , Guanine/pharmacology
5.
Nanoscale Adv ; 6(9): 2363-2370, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38694473

ABSTRACT

Herein, we report the successful fabrication of a series of transition metal doped Ni nanoparticles (NPs) coordinated with Ni single atoms in nitrogen-doped carbon nanotubes (denoted as Ni1+NPsM-NCNTs, M = Mn, Fe, Co, Cu and Zn; Ni1 = Ni single atom). X-ray absorption fine structure reveals the coexistence of Ni single atoms with Ni-N4 coordination and NiM NPs. When applied for electrocatalytic CO2RR, the Ni1+NPsM-NCNT compounds show the Faradaic efficiency of CO (FECO) with a volcano-like tendency of Mn < Fe ≈ Co < Zn < Cu, in which the Ni1+NPsCu-NCNT exhibits the highest FECO of 96.92%, a current density of 171.25 mA cm-2 and a sustainable stability over 24 hours at a current density of 100 mA cm-2, outperforming most reported examples in the literature. Detailed experiments and theoretical calculations reveal that for Ni1+NPsCu-NCNTs, the electron transfer from NiCu NPs to Ni single atoms strengthens the adsorption of *COOH intermediates. Moreover, the d-band center of Ni-N in Ni1+NPsCu-NCNT is upshifted, providing stronger binding with the reaction intermediates of *COOH, whereas the NiCu NPs increase the Gibbs free energy change of the Volmer step, suppressing the competitive HER.

6.
Article in English | MEDLINE | ID: mdl-38700962

ABSTRACT

In this paper, a high gain amplifier with phase compensation loop is presented. A structure of parallel gate cross-coupled transistors to both ends of differential pair drain and source is designed to improves the load impedance, which obtains sufficient gain and further reduces power consumption. A novel capacitor bootstrap load circuit is proposed. The capacitor bootstrap topology is constructed by the drain source resistance of the transistor working in the cut-off region, where the gate source parasitic capacitor of the transistor is in parallel with the bootstrap capacitor rather than the existing series structure, thereby only a small bootstrap capacitor is required. By avoiding the use of large capacitors, chip area can be effectively reduced without compromising performance such as gain and bandwidth. The amplifier is fabricated using 10-µm n-type a-IGZO TFT technology. Measurement results show that the proposed amplifier achieves a voltage gain of 43.5dB and a common mode rejection ratio of 61.2dB while maintaining low power consumption. The amplifier also exhibits a -3dB bandwidth covering 0.4~2.1KHz, encompassing major bioelectric frequency bands. A real-time ECG signal was successfully captured using the fabricated TFT amplifier and gel electrodes. It has great potential in flexible sensing and acquisition applications such as electro cardiogram (ECG), electro encephalogram (EEG), pulse detection, and other wearable applications.

7.
Nanomaterials (Basel) ; 14(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38786799

ABSTRACT

The conversion of solar energy into hydrogen using photocatalysts is a pivotal solution to the ongoing energy and environmental challenges. In this study, inverse opal (IO) ZnIn2S4 (ZIS) with varying pore sizes is synthesized for the first time via a template method. The experimental results indicate that the constructed inverse opal ZnIn2S4 has a unique photonic bandgap, and its slow photon effect can enhance the interaction between light and matter, thereby improving the efficiency of light utilization. ZnIn2S4 with voids of 200 nm (ZIS-200) achieved the highest hydrogen production rate of 14.32 µ mol h-1. The normalized rate with a specific surface area is five times higher than that of the broken structures (B-ZIS), as the red edge of ZIS-200 is coupled with the intrinsic absorption edge of the ZIS. This study not only developed an approach for constructing inverse opal multi-metallic sulfides, but also provides a new strategy for enriching efficient ZnIn2S4-based photocatalysts for hydrogen evolution from water.

8.
FASEB J ; 38(4): e23475, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38334450

ABSTRACT

Ankyrin-repeat proteins with a suppressor of cytokine signaling box (ASB) proteins belong to the E3 ubiquitin ligase family. 18 ASB members have been identified whose biological functions are mostly unexplored. Here, we discovered that ASB3 was essential for hepatocellular carcinoma (HCC) development and high ASB3 expression predicted poor clinical outcomes. ASB3 silencing induced HCC cell growth arrest and apoptosis in vitro and in vivo. Liver-specific deletion of Asb3 gene suppressed diethylnitrosamine (DEN)-induced liver cancer development. Mechanistically, ASB3 interacted with death receptor 5 (DR5), which promoted ubiquitination and degradation of DR5. We further showed that ASB3 knockdown stabilized DR5 and increased the sensitivity of liver cancer cells to the treatment of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in a DR5-dependent manner in cellular and in animal models. In summary, we demonstrated that ASB3 promoted ubiquitination and degradation of DR5 in HCC, suggesting the potential of targeting ASB3 to HCC treatment and overcome TRAIL resistance.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Apoptosis , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Ligands , Liver Neoplasms/metabolism , TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Ubiquitination , Humans
9.
Small ; 20(28): e2310857, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38349039

ABSTRACT

Photocatalytic oxidative coupling of CH4 (OCM) is a promising CH4 conversion process that can achieve efficient methane conversion with the assistance of O2. It remains to be highly challenging to improve the photocatalytic OCM activity from catalyst design and to deepen the understanding of the reactant activation in the OCM process. In this work, the Au-loaded ZnAl-layered double hydroxides (LDHs) with and without oxygen vacancy are constructed (denoted as Au/ZnAl and Au/ZnAl-v), respectively. When applied for photocatalytic OCM, the Au/ZnAl-v shows a CH4 conversion rate of 8.5 mmol g-1 h-1 with 92% selectivity of C2H6 at 40 °C, outperforming most reported photocatalytic OCM systems at low temperature reported in the literature. Furthermore, the catalytic performance of Au/ZnAl-v can be stable for 100 h. In contrast, the An/ZnAl exhibits a CH4 conversion rate of 0.8 mmol g-1 h-1 with 46% selectivity of C2H6. Detailed characterizations and DFT calculation studies reveal that the introduced Ov sites on Au/ZnAl-v are able to activate O2, and the resulting superoxide radical O2·- greatly promotes the activation of CH4. The coupling of CH3· groups with the assistance of Au cocatalyst leads to the formation of C2H6 with high photocatalytic activity.

10.
Small ; 20(3): e2305539, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37699754

ABSTRACT

Artificial enzymes, as alternatives to natural enzymes, have attracted enormous attention in the fields of catalysis, biosensing, diagnostics, and therapeutics because of their high stability and low cost. Polyoxometalates (POMs), a class of inorganic metal oxides, have recently shown great potential in mimicking enzyme activity due to their well-defined structure, tunable composition, high catalytic efficiency, and easy storage properties. This review focuses on the recent advances in POM-based artificial enzymes. Different types of POMs and their derivatives-based mimetic enzyme functions are covered, as well as the corresponding catalytic mechanisms (where available). An overview of the broad applications of representative POM-based artificial enzymes from biosensing to theragnostic is provided. Insight into the current challenges and the future directions for POMs-based artificial enzymes is discussed.


Subject(s)
Anions , Polyelectrolytes , Anions/chemistry , Polyelectrolytes/chemistry , Enzymes
11.
Small ; 20(19): e2307975, 2024 May.
Article in English | MEDLINE | ID: mdl-38098446

ABSTRACT

Electrochemical methanol oxidation reaction (MOR) is regarded as a promising pathway to obtain value-added chemicals and drive cathodic H2 production, while the rational design of catalyst and in-depth understanding of the structure-activity relationship remains challenging. Herein, the ultrathin NiV-LDH (u-NiV-LDH) with abundant defects is successfully synthesized, and the defect-enriched structure is finely determined by X-ray adsorption fine structure etc. When applied for MOR, the as-prepared u-NiV-LDH presents a low potential of 1.41 V versus RHE at 100 mA cm-2, which is much lower than that of bulk NiV-LDH (1.75 V vs RHE) at the same current density. The yield of H2 and formate is 98.2% and 88.1% as its initial over five cycles and the ultrathin structure of u-NiV-LDH can be well maintained. Various operando experiments and theoretical calculations prove that the few-layer stacking structure makes u-NiV-LDH free from the interlayer hydrogen diffusion process and the hydrogen can be directly detached from LDH laminate. Moreover, the abundant surface defects upshift the d-band center of u-NiV-LDH and endow a higher local methanol concentration, resulting in an accelerated dehydrogenation kinetics on u-NiV-LDH. The synergy of the proton detachment from the laminate and the methanol dehydrogenation oxidation contributes to the excellent MOR performance of u-NiV-LDH.

12.
RSC Adv ; 13(51): 36254-36260, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38090074

ABSTRACT

The level of heat resistance in microbial cells is an important factor in determining the energy consumption and product synthesis efficiency of fermentation processes. Current research generally believes that heat shock proteins (HSPs) are the most closely related functional molecules to heat resistance inside cells. They can stabilize cell structures and allow cells to perform their normal physiological functions. Based on our previous transcriptome data, this study applies synthetic biology methods to validate the functionality of heat-resistant elements. The researchers introduced gene circuits expressing small HSPs (sHSP-HB8, HSP12, HSP26, HSP30, HSP42, and ibpa-MB4) with different promoter strengths (TDH3p, YNL247wp) into Saccharomyces cerevisiae strains for functional verification. All engineered strains, with the exception of No. 3 and No. 8, demonstrated a significantly higher growth rate and cell viability at 42 °C. Among them, No. 7 (YNL247wp-HSP12-SLM5t) and No. 11 (YNL247wp-sHSP-HB8-SLM5t), the two best performing engineered strains, exhibited a 19.8% and 17.2% increase in cell density, respectively, compared to the control strain. Additionally, the analysis of pyruvate kinase (PK) and malate dehydrogenase (MDH) enzyme activities indicated that the engineered strains enhanced protein quality at higher temperatures. The research methods and ideas presented in this paper have significant scientific reference value for exploring and applying other stress-resistant gene circuits.

13.
Micromachines (Basel) ; 14(12)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38138413

ABSTRACT

A low-power SAR ADC with capacitor-splitting energy-efficient switching scheme is proposed for wearable biosensor applications. Based on capacitor-splitting, additional reference voltage Vcm, and common-mode techniques, the proposed switching scheme achieves 93.76% less switching energy compared to the conventional scheme with common-mode voltage shift in one LSB. With the switching scheme, the proposed SAR ADC can lower the dependency on the accuracy of Vcm and the complexity of digital control logic and DAC driver circuits. Furthermore, the SAR ADC employs low-noise and low-power dynamic comparators utilizing multi-clock control, low sampling error sampling switches based on the bootstrap technique, and dynamic SAR logic. The simulation results demonstrate that the ADC achieves a 61.77 dB SNDR and a 78.06 dB SFDR and consumes 4.45 µW of power in a 180 nm process with a 1 V power supply, a full-swing input signal frequency of 93.33 kHz, and a sampling rate of 200 kS/s.

14.
Appl Opt ; 62(28): 7544-7548, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37855525

ABSTRACT

In a stretcher, the surface distortion of the optical elements can introduce spectral phase modulations into the laser, which can affect the laser's signal-to-noise ratio. In this paper, by combining ray tracing methods and angular spectrum diffraction methods, the impact of the mid-frequency surface distortion of the optical elements in an cylindrical Offner stretcher on the far-field signal-to-noise ratio of the laser is simulated. The results show that reducing the spatial chirp on the convex cylindrical mirror can effectively improve the far-field signal-to-noise ratio of the laser, and two methods to improve the far-field signal-to-noise ratio are presented.

15.
ACS Appl Mater Interfaces ; 15(39): 45764-45773, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37726198

ABSTRACT

Li metal batteries applying Li-rich, Mn-rich (LMR) layered oxide cathodes present an opportunity to achieve high-energy density at reduced cell cost. However, the intense oxidizing and reducing potentials associated with LMR cathodes and Li anodes present considerable design challenges for prospective electrolytes. Herein, we demonstrate that, somewhat surprisingly, a properly designed localized-high-concentration electrolyte (LHCE) based on ether solvents is capable of providing reversible performance for Li||LMR cells. Specifically, the oxidative stability of the LHCE was found to heavily rely on the ratio between salt and solvating solvent, where local-saturation was necessary to stabilize performance. Through molecular dynamics (MD) simulations, this behavior was found to be a result of aggregated solvation structures of Li+/anion pairs. This LHCE system was found to produce significantly improved LMR cycling (95.8% capacity retention after 100 cycles) relative to a carbonate control as a result of improved cathode-electrolyte interphase (CEI) chemistry from X-ray photoelectron spectroscopy (XPS), and cryogenic transmission electron microscopy (cryo-TEM). Leveraging this stability, 4 mAh cm-2 LMR||2× Li full cells were demonstrated, retaining 87% capacity after 80 cycles in LHCE, whereas the control electrolyte produced rapid failure. This work uncovers the benefits, design requirements, and performance origins of LHCE electrolytes for high-voltage Li||LMR batteries.

16.
Small ; 19(50): e2304604, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37635099

ABSTRACT

Selective conversion of ethane (C2 H6 ) to high-value-added chemicals is a very important chemical process, yet it remains challenging owing to the difficulty of ethane activation. Here, a NiTi-layered double hydroxide (NiTi-LDH) photocatalyst is reported for oxidative coupling of ethane to n-butane (n-C4 H10 ) by using CO2 as an oxidant. Remarkably, the as-prepared NiTi-LDH exhibits a high selectivity for n-C4 H10 (92.35%) with a production rate of 62.06 µmol g-1 h-1 when the feed gas (CO2 /C2 H6 ) ratio is 2:8. The X-ray absorption fine structure (XAFS) and photoelectron characterizations demonstrate that NiTi-LDH possesses rich vacancies and high electron-hole separation efficiency, which can promote the coupling of C2 H6 to n-C4 H10 . More importantly, density functional theory (DFT) calculations reveal that ethane is first activated on the oxygen vacancies of the catalyst surface, and the C─C coupling pathway is more favorable than the C─H cleavage to C2 H4 or CH4 , resulting in the high production rate and selectivity for n-C4 H10 .

17.
Chemistry ; 29(37): e202300050, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37043334

ABSTRACT

Layered double hydroxides (LDHs) have shown great potential as adsorbents for the removal of heavy metals. Nevertheless, how the host-guest interactions of LDHs affect the removal mechanism remains to be less explored. Herein, CO3 2- /NO3 - /SO4 2- /Cl- intercalated MgAl-LDHs with different host-guest interactions were fabricated and their removal mechanism for Cd2+ was investigated. The removal capacity increased in the order of MgAl-CO3 (127.3 mg/g)

18.
J Am Chem Soc ; 145(17): 9624-9633, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37071778

ABSTRACT

Sulfurized polyacrylonitrile (SPAN) represents a class of sulfur-bonded polymers, which have shown thousands of stable cycles as a cathode in lithium-sulfur batteries. However, the exact molecular structure and its electrochemical reaction mechanism remain unclear. Most significantly, SPAN shows an over 25% 1st cycle irreversible capacity loss before exhibiting perfect reversibility for subsequent cycles. Here, with a SPAN thin-film platform and an array of analytical tools, we show that the SPAN capacity loss is associated with intramolecular dehydrogenation along with the loss of sulfur. This results in an increase in the aromaticity of the structure, which is corroborated by a >100× increase in electronic conductivity. We also discovered that the conductive carbon additive in the cathode is instrumental in driving the reaction to completion. Based on the proposed mechanism, we have developed a synthesis procedure to eliminate more than 50% of the irreversible capacity loss. Our insights into the reaction mechanism provide a blueprint for the design of high-performance sulfurized polymer cathode materials.

19.
Small ; 19(21): e2300581, 2023 May.
Article in English | MEDLINE | ID: mdl-36823447

ABSTRACT

Electrocatalytic reduction of CO2 to high-value-added chemicals provides a feasible path for global carbon balance. Herein, the fabrication of NiNP x @NiSA y -NG (x,y = 1, 2, 3; NG = nitrogen-doped graphite) is reported, in which Ni single atom sites (NiSA ) and Ni nanoparticles (NiNP ) coexist. These NiNP x @NiSA y -NG presented a volcano-like trend for maximum CO Faradaic efficiency (FECO ) with the highest point at NiNP2 @NiSA2 -NG in CO2 RR. NiNP2 @NiSA2 -NG exhibited ≈98% of maximum FECO and a large current density of -264 mA cm-2 at -0.98 V (vs. RHE) in the flow cell. In situ experiment and density functional theory (DFT) calculations confirmed that the proper content of NiSA and NiNP balanced kinetic between proton-feeding and CO2 hydrogenation. The NiNP in NiNP2 @NiSA2 -NG promoted the formation of H* and reduced the energy barrier of *CO2 hydrogenation to *COOH, and CO desorption can be efficiently facilitated by NiSA sites, thereby resulting in enhanced CO2 RR performance.

20.
Micromachines (Basel) ; 15(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38258179

ABSTRACT

A hybrid energy-efficient, area-efficient, low-complexity switching scheme in SAR ADC for biosensor applications is proposed. This scheme is a combination of the monotonic technique, the MSB capacitor-splitting technique, and a new switching method. The MSB capacitor-splitting technique, as well as the reference voltage Vaq allow for more options for reference voltage conversion, resulting in higher area savings and higher energy efficiency. In a capacitor array, the circuit performs unilateral switching during all comparisons except for the second and last two comparisons, reducing the difficulty in designing the drive circuit. The proposed switching scheme saves 98.4% of the switching energy and reduces the number of unit capacitors by 87.5% compared to a conventional scheme. Furthermore, the SAR ADC employs low-noise and low-power dynamic comparators utilizing multi-clock control, low-sampling error-sampling switches based on the bootstrap technique, and dynamic SAR logic. The simulation results demonstrated that the proposed SAR ADC achieves 61.51 dB SNDR, 79.21 dB SFDR and consumes 0.278 µW of power in a 180 nm process with a 1 V power supply, a full swing input signal frequency of 23.33 kHz, and a sampling rate of 100 kS/s.

SELECTION OF CITATIONS
SEARCH DETAIL
...