Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(17)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36076931

ABSTRACT

Two common γ-chain family cytokines IL-2 and IL-15 stimulate the same mammalian target of rapamycin complex-1 (mTORC1) signaling yet induce effector T (TE) and memory T (TM) cell differentiation via a poorly understood mechanism(s). Here, we prepared in vitro IL-2-stimulated TE (IL-2/TE) and IL-15-stimulated TM (IL-15/TM) cells for characterization by flow cytometry, Western blotting, confocal microscopy and Seahorse-assay analyses. We demonstrate that IL-2 and IL-15 stimulate strong and weak mTORC1 signals, respectively, which lead to the formation of CD62 ligand (CD62L)- killer cell lectin-like receptor subfamily G member-1 (KLRG)+ IL-2/TE and CD62L+KLRG- IL-15/TM cells with short- and long-term survival following their adoptive transfer into mice. The IL-15/mTORC1Weak signal activates the forkhead box-O-1 (FOXO1), T cell factor-1 (TCF1) and Eomes transcriptional network and the metabolic adenosine monophosphate-activated protein kinase-α-1 (AMPKα1), Unc-51-like autophagy-activating kinase-1 (ULK1) and autophagy-related gene-7 (ATG7) axis, increasing the expression of mitochondrial regulators aquaporin-9 (AQP9), mitochondrial transcription factor-A (TFAM), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), carnitine palmitoyl transferase-1 (CPT1α), microtubule-associated protein light chain-3 II (LC3II), Complex I and ortic atrophy-1 (OPA1), leading to promoting mitochondrial biogenesis and fatty-acid oxidation (FAO). Interestingly, AMPKα1 deficiency abrogates these downstream responses to IL-15/mTORC1Weak signaling, leading to the upregulation of mTORC1 and hypoxia-inducible factor-1α (HIF-1α), a metabolic switch from FAO to glycolysis and reduced cell survival. Taken together, our data demonstrate that IL-15/mTORC1Weak signaling controls T-cell memory via activation of the transcriptional FOXO1-TCF1-Eomes and metabolic AMPKα1-ULK1-ATG7 pathways, a finding that may greatly impact the development of efficient vaccines and immunotherapies for the treatment of cancer and infectious diseases.


Subject(s)
AMP-Activated Protein Kinases , Autophagy , Cell Differentiation , Interleukin-15 , Interleukin-2 , Respiration , AMP-Activated Protein Kinases/metabolism , Animals , Autophagy/physiology , Interleukin-15/pharmacology , Mammals , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , T-Lymphocytes
2.
Int J Mol Sci ; 23(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35628403

ABSTRACT

Simulated microgravity (SMG) inhibits osteoblast differentiation (OBD) and induces bone loss via the inhibition of the Wnt/ß-catenin pathway. However, the mechanism by which SMG alters the Wnt/ß-catenin pathway is unknown. We previously demonstrated that SMG altered the focal adhesion kinase (FAK)-regulated mTORC1, AMPK and ERK1/2 pathways, leading to the inhibition of tumor cell proliferation/metastasis and promoting cell apoptosis. To examine whether FAK similarly mediates SMG-dependent changes to Wnt/ß-catenin in osteoblasts, we characterized mouse MC3T3-E1 cells cultured under clinostat-modeled SMG (µg) conditions. Compared to cells cultured under ground (1 g) conditions, SMG reduces focal adhesions, alters cytoskeleton structures, and down-regulates FAK, Wnt/ß-catenin and Wnt/ß-catenin-regulated molecules. Consequently, protein-2 (BMP2), type-1 collagen (COL1), alkaline-phosphatase activity and matrix mineralization are all inhibited. In the mouse hindlimb unloading (HU) model, SMG-affected tibial trabecular bone loss is significantly reduced, according to histological and micro-computed tomography analyses. Interestingly, the FAK activator, cytotoxic necrotizing factor-1 (CNF1), significantly suppresses all of the SMG-induced alterations in MC3T3-E1 cells and the HU model. Therefore, our data demonstrate the critical role of FAK in the SMG-induced inhibition of OBD and bone loss via the Wnt/ß-catenin pathway, offering FAK signaling as a new therapeutic target not only for astronauts at risk of OBD inhibition and bone loss, but also osteoporotic patients.


Subject(s)
Focal Adhesion Protein-Tyrosine Kinases , Osteoblasts , Weightlessness , Wnt Signaling Pathway , beta Catenin , 3T3 Cells , Animals , Enzyme Activation , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Mice , Osteoblasts/cytology , Osteoblasts/metabolism , X-Ray Microtomography , beta Catenin/metabolism
3.
J Immunol ; 208(1): 155-168, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34872976

ABSTRACT

CD8+ memory T (TM) cells play a critical role in immune defense against infection. Two common γ-chain family cytokines, IL-2 and IL-7, although triggering the same mTORC1-S6K pathway, distinctly induce effector T (TE) cells and TM cells, respectively, but the underlying mechanism(s) remains elusive. In this study, we generated IL-7R-/and AMPKα1-knockout (KO)/OTI mice. By using genetic and pharmaceutical tools, we demonstrate that IL-7 deficiency represses expression of FOXO1, TCF1, p-AMPKα1 (T172), and p-ULK1 (S555) and abolishes T cell memory differentiation in IL-7R KO T cells after Listeria monocytogenesis rLmOVA infection. IL-2- and IL-7-stimulated strong and weak S6K (IL-2/S6Kstrong and IL-7/S6Kweak) signals control short-lived IL-7R-CD62L-KLRG1+ TE and long-term IL-7R+CD62L+KLRG1- TM cell formations, respectively. To assess underlying molecular pathway(s), we performed flow cytometry, Western blotting, confocal microscopy, and Seahorse assay analyses by using the IL-7/S6Kweak-stimulated TM (IL-7/TM) and the control IL-2/S6Kstrong-stimulated TE (IL-2/TE) cells. We determine that the IL-7/S6Kweak signal activates transcriptional FOXO1, TCF1, and Id3 and metabolic p-AMPKα1, p-ULK1, and ATG7 molecules in IL-7/TM cells. IL-7/TM cells upregulate IL-7R and CD62L, promote mitochondria biogenesis and fatty acid oxidation metabolism, and show long-term cell survival and functional recall responses. Interestingly, AMPKα1 deficiency abolishes the AMPKα1 but maintains the FOXO1 pathway and induces a metabolic switch from fatty acid oxidation to glycolysis in AMPKα1 KO IL-7/TM cells, leading to loss of cell survival and recall responses. Taken together, our data demonstrate that IL-7-stimulated weak strength of mTORC1-S6K signaling controls T cell memory via activation of transcriptional FOXO1-TCF1-Id3 and metabolic AMPKα1-ULK1-ATG7 pathways. This (to our knowledge) novel finding provides a new mechanism for a distinct IL-2/IL-7 stimulation model in T cell memory and greatly impacts vaccine development.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Autophagy-Related Protein 7/metabolism , Autophagy-Related Protein-1 Homolog/metabolism , CD8-Positive T-Lymphocytes/immunology , Forkhead Box Protein O1/metabolism , Hepatocyte Nuclear Factor 1-alpha/metabolism , Inhibitor of Differentiation Proteins/metabolism , Interleukin-7/metabolism , Listeria monocytogenes/physiology , Listeriosis/immunology , Mechanistic Target of Rapamycin Complex 1/metabolism , Memory T Cells/immunology , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , AMP-Activated Protein Kinases/genetics , Animals , Cell Differentiation , Cell Survival , Cells, Cultured , Cytotoxicity, Immunologic , Fatty Acids/metabolism , Forkhead Box Protein O1/genetics , Gene Expression Regulation , Glycolysis , Hepatocyte Nuclear Factor 1-alpha/genetics , Immunologic Memory , Inhibitor of Differentiation Proteins/genetics , Interleukin-7/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-7/genetics , Signal Transduction , Vaccine Development
4.
Cell Mol Immunol ; 18(12): 2632-2647, 2021 12.
Article in English | MEDLINE | ID: mdl-34782757

ABSTRACT

Irreversible electroporation (IRE) is a new cancer ablation technology, but methods to improve IRE-induced therapeutic immunity are only beginning to be investigated. We developed a mouse model bearing large primary (300 mm3) and medium distant (100 mm3) EG7 lymphomas engineered to express ovalbumin (OVA) as a nominal tumor antigen. We established experimental protocols including IRE alone and IRE combined with Toll-like receptor (TLR)3/9 agonists (poly I:C/CpG) (IRE + pIC/CpG), PD-1 blockade (IRE + PD-1 blockade), or both (IRE + Combo) to investigate therapeutic effects on primary and distant EG7 tumors and conversion-promoting effects on the immunotolerant tumor microenvironment (TME). We demonstrated that IRE alone simulated very weak OVA-specific CD8+ T cell responses and did not inhibit primary tumor growth. IRE + pIC/CpG synergistically stimulated more efficient OVA-specific CD8+ T cell responses and primary tumor growth inhibition than IRE + PD-1 blockade. IRE + pIC/CpG played a major role in the modulation of immune cell profiles but a minor role in the downregulation of PD-L1 expression in the TME and vice versa for IRE + PD-1 blockade. IRE + Combo cooperatively induced potent OVA-specific CD8+ T cell immunity and rescued exhausted intratumoral CD8+ T cells, leading to eradication of not only primary tumors but also untreated concomitant distant tumors and lung metastases. IRE + Combo efficiently modulated immune cell profiles, as evidenced by reductions in immunotolerant type-2 (M2) macrophages, myeloid-derived suppressor-cells, plasmacytoid dendritic cells, and regulatory T cells and by increases in immunogenic M1 macrophages, CD169+ macrophages, type-1 conventional dendritic cells, and CD8+ T cells, leading to conversion of immunotolerance in not only primary TMEs but also untreated distant TMEs. IRE + Combo also showed effective therapeutic effects in two breast cancer models. Therefore, our results suggest that IRE + Combo is a promising strategy to improve IRE ablation therapy in cancer.


Subject(s)
CD8-Positive T-Lymphocytes , Programmed Cell Death 1 Receptor , Animals , Cell Line, Tumor , Electroporation , Immune Tolerance , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Toll-Like Receptor 3/agonists , Toll-Like Receptor 9/agonists , Tumor Microenvironment/immunology
5.
BMC Cancer ; 21(1): 1012, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34503444

ABSTRACT

BACKGROUND: UEV1A encodes a ubiquitin-E2 variant closely associated with tumorigenesis and metastasis, but its underlying mechanism in promoting metastasis remains to be investigated. METHODS: In this study, we experimentally manipulated UEV1A and CT45A gene expression and monitored their effects on cancer-related gene expression, cell migration and the signal transduction cascade. RESULTS: It was found that UEV1A overexpression induces CT45A family gene expression in breast cancer cells. Indeed, ectopic expression of UEV1A was sufficient to induce CT45A and its downstream genes involved in tumorigenesis, epithelial-mesenchymal transition (EMT), stemness and metastasis, and to promote cell migration and EMT signaling. Consistently, depletion of CT45A abolished the above effects, indicating that CT45A is a critical downstream effector of Uev1A. The Uev1A-induced cell migration and EMT signaling was dependent on AKT but independent of NF-κB, indicating that CT45A acts downstream of the AKT pathway. CONCLUSIONS: Based on previous reports and observations in this study, we propose that the Ubc13-Uev1A complex activates AKT through K63-linked polyubiquitination, which leads to enhanced CT45A expression, stimulated cell migration and EMT signaling in breast cells. Since similar effects were also observed in a colorectal cancer cell line, the Ubc13/Uev1A-AKT-CT45A axis may also promote tumorigenesis and metastasis in other tissues.


Subject(s)
Antigens, Neoplasm/metabolism , Breast Neoplasms/metabolism , Cell Movement , Proto-Oncogene Proteins c-akt/metabolism , Transcription Factors/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Antigens, Neoplasm/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , HCT116 Cells/metabolism , HCT116 Cells/pathology , Humans , MCF-7 Cells , Microarray Analysis , NF-kappa B , Neoplastic Stem Cells , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/physiology , Transcription Factors/deficiency , Transcription Factors/genetics , Ubiquitin-Conjugating Enzymes/deficiency , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitination , Up-Regulation
6.
Int J Mol Sci ; 23(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35008461

ABSTRACT

Energy sensors mTORC1 and AMPKα1 regulate T-cell metabolism and differentiation, while rapamycin (Rapa)-inhibition of mTORC1 (RIM) promotes T-cell memory. However, the underlying pathway and the role of AMPKα1 in Rapa-induced T-cell memory remain elusive. Using genetic and pharmaceutical tools, we demonstrate that Rapa promotes T-cell memory in mice in vivo post Listeria monocytogenesis rLmOVA infection and in vitro transition of effector T (TE) to memory T (TM) cells. IL-2- and IL-2+Rapa-stimulated T [IL-2/T and IL-2(Rapa+)/T] cells, when transferred into mice, differentiate into short-term IL-7R-CD62L-KLRG1+ TE and long-lived IL-7R+CD62L+KLRG1- TM cells, respectively. To assess the underlying pathways, we performed Western blotting, confocal microscopy and Seahorse-assay analyses using IL-2/T and IL-2(Rapa+)/T-cells. We determined that IL-2(Rapa+)/T-cells activate transcription FOXO1, TCF1 and Eomes and metabolic pAMPKα1(T172), pULK1(S555) and ATG7 molecules and promote mitochondrial biogenesis and fatty-acid oxidation (FAO). We found that rapamycin-treated AMPKα-deficient AMPKα1-KO IL-2(Rapa+)/TM cells up-regulate transcription factor HIF-1α and induce a metabolic switch from FAO to glycolysis. Interestingly, despite the rapamycin treatment, AMPKα-deficient TM cells lost their cell survival capacity. Taken together, our data indicate that rapamycin promotes T-cell memory via transcriptional FOXO1-TCF1-Eomes programs and AMPKα1-ULK1-ATG7 metabolic axis, and that AMPKα1 plays a critical role in RIM-induced T-cell memory.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Immunologic Memory/drug effects , Mechanistic Target of Rapamycin Complex 1/metabolism , Sirolimus/pharmacology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Animals , Cell Survival/drug effects , Cell Survival/physiology , Forkhead Box Protein O1/metabolism , Hepatocyte Nuclear Factor 1-alpha/metabolism , Interleukin-2/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/drug effects , Signal Transduction/physiology , T-Box Domain Proteins/metabolism
7.
Cell Signal ; 74: 109712, 2020 10.
Article in English | MEDLINE | ID: mdl-32659264

ABSTRACT

The ubiquitin (Ub)-conjugating enzyme variants (Uev) Uev1A and Mms2 interact with Ubc13 to form heterodimeric complexes with different biological functions. Uev1A-Ubc13 is involved in NF-κB activation while Mms2-Ubc13 is required for the DNA-damage response. The structural comparison of the core domains of these two Uevs reveals no obvious difference, suggesting that the amino terminal extension of Uev1A plays a critical role in the functional determination. Indeed, truncated Uev1A lacking the N-terminal extension behaves like Mms2, while a chimeric protein containing the N-terminal Uev1A fused to Mms2 functionally resembles Uev1A. Interestingly, the N-terminal extension of Uev1A also dictates whether to assemble di- or poly-Ub chains in an in vitro reaction. Both thermodynamic measurements and enzymatic assays revealed that the Uev1A N-terminal extension weakens the Uev-Ubc13 interaction; however, other means capable of causing a reduced Uev1A-Ubc13 affinity and poly-Ub chain assembly do not necessarily promote NF-κB activation, indicating that the poly-Ub chain formation is not the only component contributed by the N-terminal extension of Uev1A. The physiological relevance of the Uev1A N-terminal truncation is presented and discussed.


Subject(s)
NF-kappa B/metabolism , Transcription Factors/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Binding Sites , Cell Line, Tumor , Gene Expression Regulation , Humans , Protein Binding
8.
Cancer Cell Int ; 19: 331, 2019.
Article in English | MEDLINE | ID: mdl-31827405

ABSTRACT

BACKGROUND: Ubiquitin-conjugating enzyme variant UEV1A is required for Ubc13-catalyzed K63-linked poly-ubiquitination that regulates several signaling pathways including NF-κB, MAPK and PI3K/AKT. Previous reports implicate UEV1A as a potential proto-oncogene and have shown that UEV1A promotes breast cancer metastasis through constitutive NF-кB activation. Ubc13-Uev1A along with TARF6 can also ubiquitinate AKT but its downstream events are unclear. METHODS: In this study, we experimentally manipulated UEV1 expression in two typical breast cancer cell lines MDA-MB-231 and MCF7 under serum starvation conditions and monitored AKT activation and its downstream protein levels, as well as cellular sensitivity to chemotherapeutic agents. RESULTS: We found that overexpression of UEV1A is sufficient to activate the AKT signaling pathway that in turn inhibits FOXO1 and BIM expression to promote cell survival under serum starvation conditions and enhances cellular resistance to chemotherapy. Consistently, experimental depletion of Uev1 in breast cancer cells inhibits AKT signaling and promotes FOXO1 and BIM expression to reduce cell survival under serum starvation stress and enhance chemosensitivity. CONCLUSIONS: Uev1A promotes cell survival under serum starvation stress through the AKT-FOXO1-BIM axis in breast cancer cells, which unveals a potential therapeutic target in the treatment of breast cancers.

9.
Oncotarget ; 9(22): 15952-15967, 2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29662619

ABSTRACT

Colorectal cancer is the second most common cause of cancer-related death worldwide. Uncontrolled growth and distant metastasis are hallmarks of colorectal cancer. However, the precise etiological factors and the mechanisms are diverse and still largely unclear. The potential proto-oncogene UEV1A encodes a ubiquitin conjugating enzyme variant, which is required for Ubc13-catalyzed K63-linked poly-ubiquitination of target proteins and the activation of NF-кB, a transcription factor known to be involved in innate immunity, anti-apoptosis, inflammation and cancer. In order to understand the roles of Uev1A in colon cancer progression, we experimentally manipulated the Uev1A level in HCT116 colon cancer cells and found that UEV1A overexpression alone is sufficient to promote invasion in vitro and metastasis in vivo. This process is mediated by NF-κB activation and depends on its physical interaction with Ubc13. No expression of Uev1A was detected in histologically normal human colonic mucosa, but its expression was detected in human colorectal adenocarcinoma, which was closely correlated with nuclear p65 levels, an indicator of NF-κB activation. Uev1A protein was detected in 46% of primary tumors and 79% of metastatic tumors examined. Our experimental data establish that among NF-κB target genes, Uev1A-regulated CXCL1 expression plays a critical role in colon cell invasion and metastasis, a notion supported by the colon adenocarcinoma survey. Furthermore, experimental depletion of Uev1 in HCT116 cells reduces CXCL1 expression, and prevents cell invasion and tumor growth in a xenograft mouse model. These results identify Uev1A as a potential therapeutic target in the treatment of metastatic colorectal cancers.

11.
Cell Cycle ; 14(24): 3929-38, 2015.
Article in English | MEDLINE | ID: mdl-26697843

ABSTRACT

The spindle assembly checkpoint (SAC) acts as a guardian against cellular threats that may lead to chromosomal missegregation and aneuploidy. Mad2, an anaphase-promoting complex/cyclosome-Cdc20 (APC/C(Cdc20)) inhibitor, has an additional homolog in mammals known as Mad2B, Mad2L2 or Rev7. Apart from its role in Polζ-mediated translesion DNA synthesis and double-strand break repair, Rev7 is also believed to inhibit APC/C by negatively regulating Cdh1. Here we report yet another function of Rev7 in cultured human cells. Rev7, as predicted earlier, is involved in the formation of a functional spindle and maintenance of chromosome segregation. In the absence of Rev7, cells tend to arrest in G2/M-phase and display increased monoastral and abnormal spindles with misaligned chromosomes. Furthermore, Rev7-depleted cells show Mad2 localization at the kinetochores of metaphase cells, an indicator of activated SAC, coupled with increased levels of Cyclin B1, an APC(Cdc20) substrate. Surprisingly unlike Mad2, depletion of Rev7 in several cultured human cell lines did not compromise SAC activity. Our data therefore suggest that besides its role in APC/C(Cdh1) inhibition, Rev7 is also required for mitotic spindle organization and faithful chromosome segregation most probably through its physical interaction with RAN.


Subject(s)
Mad2 Proteins/metabolism , Spindle Apparatus/metabolism , Anaphase-Promoting Complex-Cyclosome/metabolism , Aneuploidy , Chromosome Segregation/genetics , Chromosome Segregation/physiology , Flow Cytometry , HCT116 Cells , HeLa Cells , Humans , Immunohistochemistry , Mad2 Proteins/genetics , Mitosis/genetics , Mitosis/physiology , Spindle Apparatus/genetics
12.
Breast Cancer Res ; 16(4): R75, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-25022892

ABSTRACT

INTRODUCTION: UEV1A encodes a ubiquitin-conjugating enzyme variant (Ubc13), which is required for Ubc13-catalyzed Lys63-linked polyubiquitination of target proteins and nuclear factor κB (NF-кB) activation. Previous reports have correlated the level of UEV1A expression with tumorigenesis; however, the detailed molecular events leading to tumors particularly breast cancer and metastasis are unclear. This study is to investigate roles of different UEV1 splicing variants, and its close homolog MMS2, in promoting tumorigenesis and metastasis in breast cancer cells. METHODS: We experimentally manipulated the UEV1 and MMS2 levels in MDA-MB-231 breast cancer cells and monitored their effects on cell invasion and migration, as well as tumor formation and metastasis in xenograft mice. The underlying molecular mechanisms leading to metastasis were also examined. RESULTS: It was found that overexpression of UEV1A alone, but not UEV1C or MMS2, is sufficient to induce cell invasion in vitro and metastasis in vivo. This process is mediated by NF-κB activation and requires functional Ubc13. Our experimental data establish that among NF-κB target genes, UEV1A-regulated matrix metalloproteinase-1 (MMP1) expression plays a critical role in cell invasion and metastasis. Interestingly, experimental depletion of UEV1 in MDA-MB-231 cells reduces MMP1 expression and prevents tumor formation and metastasis in a xenograft mouse model, while overexpression of MMP1 overrides the metastasis effects in UEV1-depleted cells. CONCLUSIONS: These results identify UEV1A as a potential therapeutic target in the treatment of metastasic breast cancers.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Matrix Metalloproteinase 1/genetics , NF-kappa B/metabolism , Transcription Factors/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Amino Acid Sequence , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Disease Models, Animal , Female , Gene Expression , Heterografts , Humans , Matrix Metalloproteinase 9/genetics , Mice , Mice, Nude , Molecular Sequence Data , Neoplasm Invasiveness , Neoplasm Metastasis , Protein Binding , Sequence Alignment , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription, Genetic , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/genetics
13.
FEBS Lett ; 586(23): 4100-7, 2012 Nov 30.
Article in English | MEDLINE | ID: mdl-23108051

ABSTRACT

Cdk1 plays an important role in undifferentiated ES cells, but the underlying mechanism remains unclear. This study explores how Cdk1 collaborates with Oct4 to inhibit differentiation in mouse ES cells. We show a direct interaction between Cdk1 and Oct4, whereas other Cdk members, including Cdk2 and Cdk4, fail to associate with Oct4. By immunocytochemistry we show that Cdk1 and Oct4 co-localize in ES cells. The biological function of the Cdk1-Oct4 complex was also addressed. We found that Cdk1 enhances the binding of Oct4 on the trophectoderm marker Cdx2 and promotes Cdx2 repression. This regulation is independent of Cyclins and of the kinase activity of Cdk1. Our study explains how Cdk1 and Oct4 interplay to inhibit ES cell differentiation into trophectoderm and thereby maintain stemness.


Subject(s)
CDC2 Protein Kinase/metabolism , Cell Differentiation/physiology , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Octamer Transcription Factor-3/metabolism , Trophoblasts/cytology , Trophoblasts/metabolism , Animals , Blotting, Western , CDC2 Protein Kinase/genetics , Cell Differentiation/genetics , Cell Line , Chromatin Immunoprecipitation , Electrophoretic Mobility Shift Assay , Immunohistochemistry , Immunoprecipitation , Mice , Octamer Transcription Factor-3/genetics , Protein Binding/genetics , Protein Binding/physiology
14.
Mol Cell Biol ; 31(16): 3457-71, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21670150

ABSTRACT

Cdc25A is a cell cycle-activating phosphatase, and its overexpression in breast cancers has been shown to correlate with poor prognosis. Most recent studies related to Cdc25A and tumor progression have focused on its role in regulating cell cycle progression. However, less is known about how Cdc25A modulates the metastasis of breast cancer cells. In this study, we revealed that Cdc25A enhances Foxo1 stability by dephosphorylating Cdk2, and Foxo1 was shown to directly regulate transcription of the metastatic factor MMP1. Further studies have shown that overexpression of Cdc25A in breast cancer cells enhances metastasis, whereas its downmodulation inhibits metastasis in mouse models, and the effects of Cdc25A on breast cancer cell metastasis are independent of cell proliferation and apoptosis. Furthermore, we have demonstrated that aberrant Cdc25A in breast cancer patient samples directly correlates with the metastatic phenotype. Further insights into this critical role of Cdc25A in the metastasis of breast cancer cells and the trial of an anti-Cdc25A strategy in mouse models may reveal its therapeutic potential in prevention and treatment of breast cancer cell dissemination.


Subject(s)
Breast Neoplasms/pathology , Forkhead Transcription Factors/physiology , Matrix Metalloproteinase 1/genetics , cdc25 Phosphatases/physiology , Animals , Cell Line, Tumor , Female , Forkhead Box Protein O1 , Gene Expression Regulation, Neoplastic , Humans , Matrix Metalloproteinase 1/metabolism , Mice , Neoplasm Metastasis , Transplantation, Heterologous , Tumor Cells, Cultured
15.
Cancer Prev Res (Phila) ; 3(7): 818-28, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20587702

ABSTRACT

The natural compound indole-3-carbinol (I3C; found in vegetables of the genus Brassica) is a promising cancer prevention or therapy agent. The cell division cycle 25A (Cdc25A) phosphatase is overexpressed in a variety of human cancers and other diseases. In the present study, I3C induced degradation of Cdc25A, arrest of the G(1) cell cycle, and inhibition of the growth of breast cancer cells. We also showed that the Ser124 site of Cdc25A, which is related to cyclin-dependent kinase 2, is required for I3C-induced degradation of Cdc25A in breast cancer cells, and that interruption of the ATM-Chk2 pathway suppressed I3C-induced destruction of Cdc25A. Our in vivo studies of different mutated forms of Cdc25A found that the mutation Cdc25A(S124A) (Ser124 to Ala124), which confers resistance to I3C-induced degradation of Cdc25A, attenuated I3C inhibition of breast tumorigenesis in a mouse xenograft model. The present in vitro and in vivo studies together show that I3C-induced activation of the ATM-Chk2 pathway and degradation of Cdc25A represent a novel molecular mechanism of I3C in arresting the G(1) cell cycle and inhibiting the growth of breast cancer cells. The finding that I3C induces Cdc25A degradation underscores the potential use of this agent for preventing and treating cancers and other human diseases with Cdc25A overexpression.


Subject(s)
Anticarcinogenic Agents/pharmacology , Breast Neoplasms/enzymology , Indoles/pharmacology , cdc25 Phosphatases/metabolism , Animals , Cell Line , Female , Humans , Mice , Mice, Inbred BALB C , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...