Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int Orthod ; 21(4): 100791, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37454531

ABSTRACT

OBJECTIVE: To compare the deformation of the main archwire and 3D movements of maxillary anterior teeth during miniscrew-supported en-masse retraction with the lever arm on the archwire and on the brackets in lingual orthodontic treatment in finite element analysis (FEM) simulation. MATERIAL AND METHODS: A 3D dental-alveolar model with bonded 0.018×0.025-inch slot lingual brackets and a 0.017×0.025-inch dimension stainless-steel archwire was created. Four FEM models were created based on a 3D dental-alveolar model: in Models A and C, the lever arms were attached to the lingual bracket, while in Models B and D, the lever arms were attached to the archwire. Meanwhile, in Models A and B, the miniscrews were placed in between the molars, while in Models C and D, the miniscrews were positioned on the palatal roof. After a 1.5N retraction force was applied from the miniscrew to the end of the lever arm, the initial movements in the sagittal, transversal, and vertical planes were recorded and analysed for maxillary anterior teeth. RESULTS: In Models B and D, smaller deformation of the main archwire and less prominent bowing effect were noticed in both sagittal and vertical directions compared to their counter groups. In Models C and D, the central incisors showed less torque loss in the sagittal direction and more canine intrusion vertically. CONCLUSIONS: For the same lever arm-miniscrew retraction configuration, the lever arm on the bracket showed less deformation of the main archwire and more body movement of the teeth than the lever arm on the archwire group. With the same level arm height, the transverse and vertical bowing effect is reduced when the lever arm was placed distal to the central incisor and the miniscrews placed next to the palatal suture.


Subject(s)
Orthodontic Brackets , Humans , Biomechanical Phenomena , Finite Element Analysis , Incisor , Orthodontic Wires , Stress, Mechanical , Tooth Movement Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...