Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 26(22): 28727-28737, 2018 Oct 29.
Article in English | MEDLINE | ID: mdl-30470045

ABSTRACT

In this paper, a straightforward approach is presented to generate Bessel beam sources in three-dimensional finite-difference time-domain (FDTD) method. Based on the angular spectrum representation (ASR), the incident Bessel beam is described as a superposition of plane waves whose wavevectors covering a conical surface. This decomposition of Bessel beam is then approximated by a finite collection of plane waves, which are injected into FDTD simulation domain using the total-field/scattered-field (TF/ST) method. The present method's correctness and accuracy are verified by comparing the reconstructed field in FDTD with the original field. Far-field scattered diagrams of a dielectric sphere and a spheroid particle illuminated by a zero-order or a higher-order Bessel beam are calculated using FDTD. The results are compared with those calculated using the generalized Lorenz-Mie theory (GLMT) and surface integral equation method (SIEM). Very good agreements have been achieved, which partially indicate the correctness of our method. Internal and near-surface field distributions for a two-layer hemisphere particle, which are illuminated by Bessel beams, are also displayed to show the potentials of this approach in solving scattering problems of complex particles. This approach can also be applied to generate other structured beam sources in FDTD, which provides an access to solve structured beam scattering by complex particles using FDTD.

2.
Sensors (Basel) ; 18(7)2018 Jul 13.
Article in English | MEDLINE | ID: mdl-30011844

ABSTRACT

Deceptive jamming against synthetic aperture radar (SAR) can create false targets or deceptive scenes in the image effectively. Based on the difference in interferometric phase between the target and deceptive jamming signals, a novel method for detecting deceptive jamming using cross-track interferometry is proposed, where the echoes with deceptive jamming are received by two SAR antennas simultaneously and the false targets are identified through SAR interferometry. Since the derived false phase is close to a constant in interferogram, it is extracted through phase filtering and frequency detection. Finally, the false targets in the SAR image are obtained according to the detected false part in the interferogram. The effectiveness of the proposed method is validated by simulation results based on the TanDEM-X system.

3.
Sensors (Basel) ; 16(11)2016 Nov 23.
Article in English | MEDLINE | ID: mdl-27886081

ABSTRACT

The quality of an interferogram, which is limited by various phase noise, will greatly affect the further processes of InSAR, such as phase unwrapping. Interferometric SAR (InSAR) geophysical measurements', such as height or displacement, phase filtering is therefore an essential step. In this work, an improved Goldstein interferogram filter is proposed to suppress the phase noise while preserving the fringe edges. First, the proposed adaptive filter step, performed before frequency estimation, is employed to improve the estimation accuracy. Subsequently, to preserve the fringe characteristics, the estimated fringe frequency in each fixed filtering patch is removed from the original noisy phase. Then, the residual phase is smoothed based on the modified Goldstein filter with its parameter alpha dependent on both the coherence map and the residual phase frequency. Finally, the filtered residual phase and the removed fringe frequency are combined to generate the filtered interferogram, with the loss of signal minimized while reducing the noise level. The effectiveness of the proposed method is verified by experimental results based on both simulated and real data.

SELECTION OF CITATIONS
SEARCH DETAIL
...