Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38498425

ABSTRACT

The combined application of manure and chemical fertilizers has been recognized as a critical factor driving significant changes in crop yield and nutrient use efficiency, holding the potential to optimize agricultural management to achieve high yields. In this 40-year study, we investigated the effect of manure amendment on soybean and maize yields, water and nitrogen use efficiencies (WUE and NUE), and water and mineral N storage at 0-100 cm soil depths from 2017 to 2018 to explore the optimization of fertilization management strategies for soybean and maize production in Northeast China. To elucidate the impact of chemical fertilizers and manure, twelve treatments-control (CK); single N fertilizer at a low rate (N1) and that at a high rate (N2); N1, phosphorus (P), and potassium (K) fertilizer (N1PK); manure alone at 13.5 and 27 t ha-1 (M1 and M2); and those combined with N, P, or K fertilizer (M1N1, M1N2, and M1N1PK and M2N1, M2N2, and M2N1PK)-were selected and studied. The results showed that long-term amendment with manure significantly increased crop biomass and yield in the soybean-maize-maize rotation system. Combining with manure increased the WUE, the partial factor productivity of N fertilizer (PFPN), and N physiological efficiency (PEN) in both the soybean and maize seasons; conserved soil water (mainly at 40-60 cm); and increased soil N retention (in the upper 60 cm layer), which reduced the risk of N leaching, with a better effect being observed after the application of 13.5 t ha-1 manure. These results provide insight into the potential of using fertilization management strategies that include amendment with 13.5 t ha-1 manure in combination with N, P, and K fertilizer in the maize season and only chemical fertilizer in the soybean season, as these results indicate that such strategies can achieve high yields and be used to implement agricultural sustainable development in brown soil regions in Northeast China.

2.
Sci Total Environ ; 903: 166518, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37657543

ABSTRACT

Diatom-bacteria interactions and the associated bloom dynamics have not been fully understood in the coastal oceans. Here, we focus on the polyunsaturated aldehydes (PUAs) produced by diatoms in the post-bloom phase and look into their roles in microbial phosphorus (P) recycling outside of a P-limited estuary. The phytoplankton community in the bloom was dominated by PUAs-producing diatoms (Skeletonema costatum, Thalassiosira spp., and Pesudonitzschia delicates) with elevated concentrations of biogenic particulate PUAs. In addition, there were micromolar levels of particle-adsorbed PUAs hotspots with distinct compositions in and out of the bloom determined by a combining large-volume filtration and on-site derivation method. Field experiments were conducted to further assess the responses of particle-attached bacteria (PAB) to different PUAs amendments. We found no differences in the alkaline phosphatase (APase) activity and the abundance of PAB between inside and outside the bloom at a low PUAs dosage (<30 µM). However, for a high PUAs dosage (300 µM), APase activity and PAB growth were reduced significantly outside the bloom but no influences within the bloom. Our findings indicate that the hotspot-level oxylipins may play essential roles in bacterial P-remineralization in P-limited coastal areas. PAB can adapt to the high level of PUAs released by diatoms (or their resulting detritus) and potentially maintain a high rate of organic P recycling during the late stages of diatom blooms. Consequently, the interaction between oxylipin-rich diatoms and bacteria may affect phytoplankton blooms and carbon sequestration in the coastal oceans.

3.
Chemosphere ; 298: 134304, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35301997

ABSTRACT

Biochar is an efficient amendment to improve soil quality and crop productivity, but the potential of biochar as a substitute for chemical fertilizers is still unknown. Here we conducted a 6-year field experiment to investigate how partial substitution of biochar to NPK fertilizers affect soil quality and rice yield in the northeast of China. The experiment included three treatments: Control (B0: NPK fertilizers only: 240 kg N ha-1, 52 kg P ha-1, and 100 kg K ha-1); Low-input biochar (B1.5: 95% N, 89% P, 75% K + 1.5 t biochar ha-1 year-1); and High-input biochar (B3.0: 90% N, 78% P, 50% K + 3.0 t biochar ha-1 year-1). The amounts of NPK application in the biochar treatments were determined according to an equivalent method. We evaluated the soil pore structure characteristics via a CT technology, and investigated soil nutrients, plant biomass, root growth, and grain yields. The results showed that, after the 6-year application, the soil pore structure and rice productivity of B1.5 were significantly improved in compared to those of B0 and B3.0. B1.5 had similar soil available NPK contents, but 6.6% higher rice yield as compared to B0, because of increased root length density (33.2%) and aboveground biomass (10.2%). B1.5 also increased soil macroporosity (>100 µm) (141.4%), fraction dimension (8.4%), and pore connectivity (16.6%) in compared with those of B0. However, B3.0 showed the lowest rice yield due to lower soil available N content (19.2%), macroporosity (28.5%), fraction dimension (5.5%), and pore connectivity (85.3%) than B0. This study demonstrated that a moderate NPK fertilizer replacement by biochar could be an effective practice that improves soil quality, increases rice growth and yield, and reduces the input of chemical fertilizers for rice production.


Subject(s)
Fertilizers , Oryza , Agriculture/methods , Charcoal , Fertilizers/analysis , Soil/chemistry
4.
Sci Total Environ ; 808: 152117, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34863747

ABSTRACT

Transparent exopolymer particles (TEPs) have drawn extensive attention in recent decades due to their crucial role in the biogeochemical and ecological processes of the ocean. However, TEP distribution and fluxes are relatively less addressed in the shelf-seas, where its variability can be affected by not only biology but also complex physical dynamics. Here, we present a comprehensive study of TEP from the coast to the basin (12 sampling sites) of the northern South China Sea (NSCS). We found a large TEP variability from 0.6 to 78.6 µg Xeq. L-1 with higher levels in the coastal waters than the offshore epipelagic waters and the deep waters. In addition, the spatial distribution of TEP was significantly correlated to the cross-shelf change of temperature, salinity, and chlorophyll-a, revealing the complex physical-biogeochemical controls on TEP variability. We found the TEP dynamics nearshore largely influenced by the sedimentation and transportation of TEP-rich aggregates from the river plume. The contribution of TEP to particulate organic carbon (POC) increased gradually when approaching the shore from the sea, suggesting an elevated role of TEP in the coastal carbon cycle. Finally, a good correlation of particle-attached bacteria (PAB) with TEP but not POC revealed a preferential utilization of TEP by PAB. Thus, TEP may play an essential role in the recycling of carbon and nitrogen in the shelf-sea. These findings are crucial for understanding of the TEP dynamics under a changing environment and the associated impacts on the oceanic carbon cycle.


Subject(s)
Carbon Cycle , Extracellular Polymeric Substance Matrix , Carbon , Chlorophyll A , Oceans and Seas
5.
Front Physiol ; 11: 615, 2020.
Article in English | MEDLINE | ID: mdl-32625112

ABSTRACT

Coral reef ecosystems cannot operate normally without an effective nitrogen cycle. For oligotrophic coral reef areas, coral-associated diazotrophs are indispensable participants in the nitrogen cycle. However, the distribution of these diazotrophs and the correlation with the physical and chemical variables of the surrounding seawater remain unclear. To this end, 68 scleractinian coral colonies were sampled from 6 coral reef areas with different environmental variables in the South China Sea to investigate the composition of associated diazotrophs based on nifH gene amplification using high-throughput sequencing. The six coral reefs can be clearly divided into two types (fringing reefs and island reefs), are affected by varying degrees of human activities and are located at different latitudes from 9°20'06"N to 22°34'55"N with different seawater temperatures. Alpha- and beta-diversity analyses showed that the distribution of diazotrophs among coral reefs exhibited significant geographical fluctuations (p ≤ 0.05) and non-significant interspecific fluctuations (p > 0.05). The predominant bacterial phyla included Proteobacteria, Chlorobi, Cyanobacteria, and two unclassified phyla. Chlorobi exhibited a relative abundance of 47-96% in coral samples from the high-latitude Daya Bay fringing reef affected by eutrophication. Unclassified bacteria II, with a relative abundance of 28-87%, was found in all coral samples from the midlatitude Luhuitou fringing reef affected by eutrophication. However, unclassified bacteria I and Proteobacteria dominated (>80% relative abundance) in most of the coral samples from the Weizhou Island fringing reef, which is far from land, and three island reefs (Huangyan Island, Xinyi Reef, and Sanjiao Reef) at relatively low latitudes. At the genus level, some core diazotrophs were found in different coral sample groups. In addition, correlation analysis with various environmental variables revealed that the variables were positively or negatively correlated with different diazotrophic genera. Coral-associated diazotrophs were common among coral individuals. However, their composition was closely related to the different environmental variables. These results provide insights into the geographical distribution characteristics of coral-associated diazotrophs and their evolutionary trends in response to environmental change in the South China Sea.

6.
Environ Sci Pollut Res Int ; 27(14): 16451-16459, 2020 May.
Article in English | MEDLINE | ID: mdl-32124289

ABSTRACT

Roundup is a widely used glyphosate-based herbicide worldwide. Roundup residues can be detected in the organs and urine of animals. However, its toxicity on mammalian preimplantation embryos has not been well investigated. Here, we show Roundup impairs the development and quality of bovine preimplantation embryos in a dose-dependent manner. Exposure to the agricultural recommended doses of Roundup caused in vitro developmental arrest and quick death of bovine embryos. Furthermore, even a very low concentration (0.9 ppm) of Roundup was harmful to bovine preimplantation development. In addition, Roundup increases intracellular calcium levels and induces oxidative stress and apoptosis in bovine embryos. Even if the embryos developed to morphologically normal blastocysts when cultured with low concentrations of Roundup, abnormal intracellular calcium and oxidative stress could be detected inside the embryos and led to an increased incidence of apoptosis in the blastocysts. These data suggest Roundup residues from the agricultural application are potentially dangerous to mammalian preimplantation embryos.


Subject(s)
Blastocyst , Herbicides , Animals , Apoptosis , Cattle , Embryonic Development , Oxidative Stress
7.
Front Microbiol ; 8: 979, 2017.
Article in English | MEDLINE | ID: mdl-28642738

ABSTRACT

It is well known that different coral species have different tolerances to thermal or cold stress, which is presumed to be related to the density of Symbiodinium. However, the intrinsic factors between stress-tolerant characteristics and coral-associated bacteria are rarely studied. In this study, 16 massive coral and 9 branching coral colonies from 6 families, 10 genera, and 18 species were collected at the same time and location (Xinyi Reef) in the South China Sea to investigate the bacterial communities. The results of an alpha diversity analysis showed that bacterial diversities associated with massive corals were generally higher than those with branching corals at different taxonomic levels (phylum, class, order, and so on). In addition, hierarchical clustering tree and PCoA analyses showed that coral species were clustered into two large groups according to the similarity of bacterial communities. Group I consisted of massive Goniastrea, Plesiastrea, Leptastrea, Platygyra, Echinopora, Porites, and Leptoria, and group II consisted of branching Acropora and Pocillopora. These findings suggested that both massive corals and branching corals have their own preference for the choice of associated bacteria, which may be involved in observed differences in thermal/cold tolerances. Further analysis found that 55 bacterial phyla, including 43 formally described phyla and 12 candidate phyla, were detected in these coral species. Among them, 52 phyla were recovered from the massive coral group, and 46 phyla were recovered from the branching coral group. Formally described coral pathogens have not been detected in these coral species, suggesting that they are less likely to be threatened by disease in this geographic area. This study highlights a clear relationship between the high complexity of bacterial community associated with coral, skeletal morphology of coral and potentially tolerances to thermal or cold stress.

8.
Interdiscip Sci ; 6(3): 187-96, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25205496

ABSTRACT

The criteria used for successful drug discovery involves high throughput screening for preclinical evaluation and its interaction with target enzymes. In silico approach resulting in the creation of drug like library and identification of essential reactions and pathways spreads across several parts of metabolism. The aim of the present study was to evaluate the preclinical property and interaction to various drug target enzymes for spiroindimicins A-D and lynamicin A and D isolated from deep marine sea derived Streptomyces sp. SCSIO 03032 with 7 selected drug target enzymes. The preclinical and molecular docking simulation was performed using In silico pharmacology and docking tool. Drug likeliness, ADME and toxicity testing findings suggested the compounds with oral drug candidate's probability. Interaction of isolated compounds against drug target enzymes was satisfactory with Spiroindimicins C, D and Lynamicin D emerging as most potent Topoisomerase II, Cathepsin K, Cytochrome P4503A4, Aromatase P450, protein kinase and histone deacetylase inhibitors. Our results suggest that In silico approach in drug discovery procedure in later stage of development can ease up making lead molecules library.


Subject(s)
Bacterial Proteins/chemistry , Computer Simulation , Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Streptomyces , Bacterial Proteins/isolation & purification , Bacterial Proteins/pharmacokinetics , Binding Sites , Drug Evaluation, Preclinical , Enzyme Inhibitors/isolation & purification
9.
Mar Drugs ; 11(6): 2113-25, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23771045

ABSTRACT

Three new napyradiomycins (1-3) were isolated from the culture broth of a marine-derived actinomycete strain SCSIO 10428, together with six known related analogues napyradiomycin A1 (4), 18-oxonapyradiomycin A1 (5), napyradiomycin B1 (6), napyradiomycin B3 (7), naphthomevalin (8), and napyradiomycin SR (9). The strain SCSIO 10428 was identified as a Streptomyces species by the sequence analysis of its 16S rRNA gene. The structures of new compounds 1-3, designated 4-dehydro-4a-dechlorona pyradiomycin A1 (1), 3-dechloro-3-bromonapyradiomycin A1 (2), and 3-chloro-6, 8-dihydroxy-8-α-lapachone (3), respectively, were elucidated by comparing their 1D and 2D NMR spectroscopic data with known congeners. None of the napyradiomycins 1-9 showed antioxidative activities. Napyradiomycins 1-8 displayed antibacterial activities against three Gram-positive bacteria Staphylococcus and Bacillus strains with MIC values ranging from 0.25 to 32 µg mL⁻¹, with the exception that compound 3 had a MIC value of above 128 µg mL⁻¹ against Staphylococcus aureus ATCC 29213. Napyradiomycins 2, 4, 6, and 7 exhibited moderate cytotoxicities against four human cancer cell lines SF-268, MCF-7, NCI-H460, and HepG-2 with IC50 values below 20 µM, while the IC50 values for other five napyradiomycins 1, 3, 5, 8 and 9 were above 20 µM.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Naphthoquinones/pharmacology , Streptomyces/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Bacteria/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Naphthoquinones/chemistry , Naphthoquinones/isolation & purification , Neoplasms/drug therapy , Neoplasms/pathology
10.
J Nat Prod ; 76(4): 694-701, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23586970

ABSTRACT

Two new cyclic hexapeptides, nocardiamides A (1) and B (2), were isolated from the culture broth of marine-derived actinomycete CNX037 strain that was identified as a Nocardiopsis species. The planar structures of nocardiamides A (1) and B (2) were assigned on the basis of 1D and 2D NMR and HRESIMS spectroscopic analyses. Their absolute configurations were deduced by the advanced Marfey's method and chiral-phase HPLC analysis. The challenge of locating two d- and one l-valine residue in 1 and 2 was accomplished by total synthesis using solid-phase peptide synthetic methods. Both 1 and 2 showed negligible antimicrobial activities against seven indicator strains and exhibited no cytotoxicity against HCT-116.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Antineoplastic Agents/isolation & purification , Nocardia/chemistry , Peptides, Cyclic/isolation & purification , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Chromatography, High Pressure Liquid , Drug Screening Assays, Antitumor , HCT116 Cells , Humans , Marine Biology , Microbial Sensitivity Tests , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Valine/chemistry
11.
Wei Sheng Wu Xue Bao ; 53(10): 1063-71, 2013 Oct 04.
Article in Chinese | MEDLINE | ID: mdl-24409762

ABSTRACT

OBJECTIVE: The present study aims to isolate and identify actinobacteria associated with the soft coral Nephthea sp., and to isolate natural products from these actinobacteria under the guidance of PCR screening for polyketides synthase (PKS) genes. METHODS: Eleven selective media were used to isolate actinobacteria associated with the soft coral Nephthea sp. collected from Yongxin Island. The isolated actinobacteria were classified on the basis of phylogenetic tree analysis of their 16S rRNA genes. Degenerated primers targeted on conserved KS (ketoacyl-synthase) domain of type I PKS genes were used to screen for potential isolates. The positive isolates were cultured in three different media to check their producing profiles. One bioactive strain that is rich in metabolites was subjected to larger scale fermentation for isolating bioactive natural products. RESULTS: A total of 20 strains were isolated from Nephthea sp., and were categorized into 3 genera including Streptomyces, Dietzia and Salinospora, among which 18 strains were positive in screening with type I PKS genes. Two bioactive compounds rifamycin S and rifamycin W were isolated and identified from Salinospora arenicola SH04. CONCLUSION: This is the first report of isolating indigenous marine actinobacteria Salinospora from the soft coral Nephthea sp. It provides an example of isolating bioactive secondary metabolites from cultivable actinobacteria associated with Nephthea sp. by PCR screening.


Subject(s)
Actinobacteria/isolation & purification , Anthozoa/microbiology , Anti-Bacterial Agents/metabolism , Seawater/microbiology , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/metabolism , Animals , Anti-Bacterial Agents/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Molecular Sequence Data , Phylogeny , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Secondary Metabolism
12.
Zhongguo Zhong Yao Za Zhi ; 36(23): 3276-80, 2011 Dec.
Article in Chinese | MEDLINE | ID: mdl-22393734

ABSTRACT

OBJECTIVE: To investigate the chemical constituents of an endophytic fungus, Nodulisporium sp. A4, from the medicinal plant Aquilaria sinensis and search for antitumor natural products. METHOD: The fungus was cultured in liquid medium and extracted with EtOAc. The compounds were isolated by various chromatographic methods (silica gel, reverse silica gel, Sephadex-LH20, preparative TLC and so on) and recrystallization. Structural elucidation was conducted by extensive analysis of spectroscopic data as well as by comparison with literature reports. The antitumor activity of isolated compounds was tested by MTT method in vitro. RESULT: Seven compounds were isolated and identified from the broth culture, their structures were determined to be 5-methyl-2-vinyltetrahydrofuran-3-ol (1), 6-methyl-2-(5-methyl-5-vinyltetrahydrofuran-2-yl) hept-5-en-2-ol (2), 6alpha-hydroxycyclonerolidol (3), rel-(1S,4S, 5R,7R,10R)-10-desmethyl-1-methyl-11-eudesmene (4), tyrosol (5), 8-methoxynaphthalen-1-ol (6), and 1,8-dimethoxynaphthalene (7). Three compounds were isolated and identified from the mycelia as ergosterol (8), ergosterol peroxide (9), and cerevisterol (10). The in vitro pharmalogical evaluation results displayed that compounds 3 and 4 showed 89.1%, 44.2% and 82.3%, 79.8% inhibition against tumor cell lines SF268 and NCI-H460 at 100 mg x L(-1), respectively. CONCLUSION: Compound 1 was a new natural product, compounds 2, 3, 7 and 10 were reported from the genus Nodulisporium sp. for the first time. Compounds 3 and 4 exhibited weak inhibitory effects on the proliferation of tumor cell lines SF268 and NCI-H460.


Subject(s)
Endophytes/chemistry , Thymelaeaceae/microbiology , Xylariales/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Organic Chemicals/chemistry , Organic Chemicals/isolation & purification , Organic Chemicals/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...