Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
J Phys Condens Matter ; 36(32)2024 May 17.
Article in English | MEDLINE | ID: mdl-38701826

ABSTRACT

Er3+doped barium yttrium fluoride (BaY2F8) crystal has gained long-term attention due to its great potential in laser and medical device applications. However, the local structures of Er3+doped BaY2F8system (Er:BYF) remain uncertain, and the effect of doping concentration on structures and properties is unknown. Therefore, in this study, the first-principles study of the structural evolution of ErxBaY2-xF8(x= 0.125, 0.25) crystals was carried out. By means of density functional theory and particle swarm optimization algorithm, the stable structures of Er:BYF crystals with two different concentrations are shown as standard monoclinic structures withP2 symmetry for the first time. The impurity Er3+ions successfully enter the main lattice, replacing the Y3+ions, and forming a [ErF8]5-polyhedron withC2point group symmetry. By calculating the electronic properties, the band gap values of the two structures are significantly reduced compared with that of pure BaY2F8crystal. However, the conduction band does not break through the Fermi level, and the crystals still maintain the insulation characteristic. According to the calculation of the electron local density function, we conclude that Er-F and Y-F in Er:BYF are connected by ionic bonds. These results fill a theoretical gap in the study of Er:BYF crystals and provide inspiration for structural evolution and material design at different doping concentrations.

2.
Phytochemistry ; 212: 113710, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37178942

ABSTRACT

Six undescribed C27-phytoecdysteroid derivatives, named superecdysones A-F, and ten known analogs were extracted from the whole plant of Dianthus superbus L. Their structures were identified by extensive spectroscopy, mass spectrometric methods, chemical transformations, chiral HPLC analysis, and the single-crystal X-ray diffraction analysis. Superecdysones A and B possess a tetrahydrofuran ring in the side chain and superecdysones C-E are rare phytoecdysones containing a (R)-lactic acid moiety, whereas superecdysone F is an uncommon B-ring-modified ecdysone. Notably, based on the variable temperature (from 333 K to 253 K) NMR experiments of superecdysone C, the missing carbon signals were visible at 253 K and assigned. The neuroinflammatory bioassay of all compounds were evaluated, and 22-acetyl-2-deoxyecdysone, 2-deoxy-20-hydroxyecdysone, 20-hydroxyecdysone, ecdysterone-22-O-benzoate, 20-hydroxyecdysone-20,22-O-R-ethylidene, and acetonide derivative 20-hydroxyecdysterone-20, 22-acetonide significantly suppressed the LPS-induced nitric oxide generation in microglia cells (BV-2), with IC50 values ranging from 6.9 to 23.0 µM. Structure-activity relationships were also discussed. Molecular docking simulations of the active compounds confirmed the possible mechanism of action against neuroinflammations. Furthermore, none compounds showed cytotoxicity against HepG2 and MCF-7. It is the first report about the occurrence and anti-neuroinflammatory activity of the phytoecdysteroids in the genus Dianthus. Our findings demonstrated that ecdysteroids may be used as potential anti-inflammatory drugs.


Subject(s)
Dianthus , Dianthus/chemistry , Ecdysterone/pharmacology , Molecular Docking Simulation , Neuroinflammatory Diseases , Ecdysteroids/pharmacology
3.
Sci Total Environ ; 863: 160769, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36526184

ABSTRACT

Carbonyls have attracted continuous attention due to their critical roles in atmospheric chemistry and their potential hazards to the ecological environment and human health. In this study, atmospheric carbonyls were measured during several ground-level-ozone (O3) pollution episodes at three urban sites (CRAES, IEP and BJUT) in Beijing in 2019 and 2020. Comparative analysis revealed that the carbonyl concentrations were 20.25 ± 6.91 ppb and 13.43 ± 5.13 ppb in 2019 and 2020 in Beijing, respectively, with a significant spatial trend from north to south, and carbonyl levels in urban Beijing were in an upper-intermediate range in China, and higher than those in other countries reported in the literature. A particularly noteworthy phenomenon is the consistency of carbonyl concentrations with variations in O3 concentrations. On O3 polluted days, the carbonyl concentrations were 1.3-1.5 times higher than those on non-O3 polluted days. Secondary formation contributed more to formaldehyde (FA) and acetaldehyde (AA) on O3 polluted days, while the anthropogenic emissions were more significant for acetone (AC) on non-O3 polluted days. Vehicle exhaust and solvent utilization were the main primary contributors to carbonyls. Due to reduced anthropogenic emissions caused by the COVID-19 lockdown and the "Program for Controlling Volatile Organic Compounds in 2020" in China, the contributions of primary emissions to carbonyls decreased in 2020 in Beijing. Human cancer risks to exposed populations from FA and AA increased with elevated O3 levels, and the risks still remained on non-O3 polluted days. The residents around the BJUT site might experience relatively higher human cancer risks than those around the other two sites. The findings in this study confirmed that atmospheric carbonyl pollution and its potential human health hazards cannot be ignored in urban Beijing; therefore, more strict control strategies for atmospheric carbonyls are urgently needed to better protect human health in Beijing in the future.


Subject(s)
Air Pollutants , COVID-19 , Ozone , Volatile Organic Compounds , Humans , Beijing , Ozone/analysis , Air Pollutants/analysis , Environmental Monitoring , Communicable Disease Control , China , Volatile Organic Compounds/analysis , Risk Assessment , Acetaldehyde/analysis , Formaldehyde/analysis
4.
Front Oncol ; 12: 816884, 2022.
Article in English | MEDLINE | ID: mdl-35280778

ABSTRACT

The pathogenesis of gastric cancer (GC) is still not fully understood. We aimed to find the potential regulatory network for ceRNA (circRNA-miRNA-immune-related mRNA) to uncover the pathological molecular mechanisms of GC. The expression profiles of circRNA, miRNA, and mRNA in gastric tissue from GC patients were downloaded from the Gene Expression Omnibus (GEO) datasets. Differentially expressed circRNAs, miRNAs, and immune-related mRNAs were filtered, followed by the construction of the ceRNA (circRNA-miRNA-immune-related mRNA) network. Functional annotation and protein-protein interaction (PPI) analysis of immune-related mRNAs in the network were performed. Expression validation of circRNAs and immune-related mRNAs was performed in the new GEO and TCGA datasets and in-vitro experiment. A total of 144 differentially expressed circRNAs, 216 differentially expressed miRNAs, and 2,392 differentially expressed mRNAs were identified in GC. Some regulatory pairs of circRNA-miRNA-immune-related mRNA were obtained, including hsa_circ_0050102-hsa-miR-4537-NRAS-Tgd cells, hsa_circ_0001013-hsa-miR-485-3p-MAP2K1-Tgd cells, hsa_circ_0003763-hsa-miR-145-5p-FGF10-StromaScore, hsa_circ_0001789-hsa-miR-1269b-MET-adipocytes, hsa_circ_0040573-hsa-miR-3686-RAC1-Tgd cells, and hsa_circ_0006089-hsa-miR-5584-3p-LYN-neurons. Interestingly, FGF10, MET, NRAS, RAC1, MAP2K1, and LYN had potential diagnostic value for GC patients. In the KEGG analysis, some signaling pathways were identified, such as Rap1 and Ras signaling pathways (involved NRAS and FGF10), Fc gamma R-mediated phagocytosis and cAMP signaling pathway (involved RAC1), proteoglycans in cancer (involved MET), T-cell receptor signaling pathway (involved MAP2K1), and chemokine signaling pathway (involved LYN). The expression validation of hsa_circ_0003763, hsa_circ_0004928, hsa_circ_0040573, FGF10, MET, NRAS, RAC1, MAP2K1, and LYN was consistent with the integrated analysis. In conclusion, the identified ceRNA (circRNA-miRNA-immune-related mRNA) regulatory network may be associated with the development of GC.

5.
Sci Total Environ ; 824: 153719, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35149078

ABSTRACT

Gaseous carbonyls are essential trace gases for tropospheric chemistry and contribute significantly to the formation of ambient air ozone (O3) in densely populated regions, especially in China. Pollution characterization and the analysis of O3, nitrogen oxides, and volatile organic compounds (O3-NOX-VOCs) sensitivities of carbonyls were investigated from October 22 to 28, 2018 at eleven urban sites in nine cities in Fujian Province, southeastern China. The total mixing ratios of 15 kinds of gaseous carbonyls (Σ15OVOCs) was 12.15 ± 2.53 ppbv in Fujian Province. The concentrations in the eastern coastal regions were higher than those in the western mountainous regions. Formaldehyde, acetone, and acetaldehyde were the top three species of Σ15OVOCs concentration. Photochemical formation during the daytime and vehicle emission during the rush hours significantly contributed to formaldehyde and acetaldehyde. The shoe-making industry is well developed in Putian, where the acetone mixing ratio was significantly higher than in other cities. The O3-NOX-VOCs sensitivities at all urban sites were in VOC-limited or transitional regimes based on the ratios of formaldehyde to NO2; from morning to afternoon, the VOC-limited sensitivity decreased, and the NOX-limited sensitivity increased gradually. Formaldehyde contributed the most significant O3 formation potential (OFP) proportion of the Σ15OVOCs. The OFP of carbonyl species accounted for half of the total VOCs in Fuzhou and Putian, suggesting that more attention needs to be given to gaseous carbonyls control. Overall, the links inferred by this study provide evidence and clues to mitigate the increasing ambient O3 concentration on the west coast of the Taiwan Strait.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Acetaldehyde/analysis , Acetone , Air Pollutants/analysis , China , Environmental Monitoring , Formaldehyde/analysis , Ozone/analysis , Photochemical Processes , Volatile Organic Compounds/analysis
6.
J Environ Sci (China) ; 113: 40-54, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34963548

ABSTRACT

Ambient carbonyls were continuously observed in the field during a heavy ozone pollution episode in Chengdu, China from August 4 to August 19, 2019, and the pollution characteristics, atmospheric photochemical reactivity, human health risk, and sources of carbonyls were analyzed. Fifteen carbonyls were quantified with average total mixing ratios of 20.38 ppbv Formaldehyde (9.86 ppbv), acetone (4.41 ppbv), and acetaldehyde (3.57 ppbv) were the three most abundant carbonyls. During the heavy ozone pollution episode, the concentration of carbonyls was found to be higher on pollution days than on the clean days, and relatively higher in the daytime, especially at noon on the pollution days. This was influenced by the intensity of photochemical reactions and precipitation. The "weekend effect" with the concentration of carbonyls was higher on the weekends than on the weekdays was pointed out. Formaldehyde, acetaldehyde and hexaldehyde were the dominant oxidative species during the observation. The carcinogenic and non-carcinogenic risk values of formaldehyde and acetaldehyde were higher on pollution days than on clean days, and these values were higher compared with those of other cities in China and abroad. Long-term exposure to these compounds should therefore be avoided. Diagnostic ratios and correlation analysis together with backward trajectory analysis showed that primary emission and secondary formation accounted 66%-76% and 24%-34% of carbonyls in Chengdu, respectively, with primary emission being the main sources of carbonyls, and carbonyls from the surrounding cities and emission from natural sources also had a significant contribution to the carbonyls in Chengdu.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , China , Environmental Monitoring , Humans , Ozone/analysis , Risk Assessment , Volatile Organic Compounds/analysis
7.
Cardiol Young ; 32(2): 223-229, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34134814

ABSTRACT

BACKGROUND: Tetralogy of Fallot is a common CHD. Studies have shown a close link between heart failure and myocardial fibrosis. Interleukin-6 has been suggested to be a post-independent factor of heart failure. This study aimed to explore the relationship between IL-6 and myocardial fibrosis during cardiopulmonary bypass. MATERIAL AND METHODS: We downloaded the expression profile dataset GSE132176 from Gene Expression Omnibus. After normalising the raw data, Gene Set Enrichment Analysis and differential gene expression analysis were performed using R. Further, a weighted gene correlation network analysis and a protein-protein interaction network analysis were used to identify HUB genes. Finally, we downloaded single-cell expression data for HUB genes using PanglaoDB. RESULTS: There were 119 differentially expressed genes in right atrium tissues comparing the post-CPB group with the pre-CPB group. IL-6 was found to be significantly up-regulated in the post-CPB group. Six genes (JUN, FOS, ATF3, EGR1, IL-6, and PTGS2) were identified as HUB genes by a weighted gene correlation network analysis and a protein-protein interaction network analysis. Gene Set Enrichment Analysis showed that IL-6 affects the myocardium during CPB mainly through the JAK/STAT signalling pathway. Finally, we used PanglaoDB data to analyse the single-cell expression of the HUB genes. CONCLUSION: Our findings suggest that high expression of IL-6 and the activation of the JAK/STAT signalling pathway during CPB maybe the potential mechanism of myocardial fibrosis. We speculate that the high expression of IL-6 might be an important factor leading to heart failure after ToF surgery. We expect that these findings will provide a basis for the development of targeted drugs.


Subject(s)
Cardiomyopathies , Interleukin-6 , Tetralogy of Fallot , Cardiopulmonary Bypass , Fibrosis , Humans , Interleukin-6/genetics , Tetralogy of Fallot/genetics , Tetralogy of Fallot/surgery
8.
Sci Total Environ ; 806(Pt 1): 150283, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34563911

ABSTRACT

Volatile halogenated hydrocarbons (VHCs) have attracted wide attention in the atmospheric chemistry field since they not only affect the ecological environment but also damage human health. In order to better understand the characteristics, sources and health risks of VHCs in typical urban areas in Beijing, and also verify the achievement in implementing the Montreal Protocol (MP) in Beijing, observational studies on 22 atmospheric VHCs species were conducted during six air pollution episodes from December 2016 to May 2017. The range in daily mixing ratios of the 6 MP-regulated VHCs was 1000-1168 pptv, and the 16 MP-unregulated VHCs was 452-2961 pptv. The 16 MP-unregulated VHCs accounted for a relatively high concentration proportion among the 22 VHCs with a mean of 70.25%. Compared with other regions, the mixing ratios of MP-regulated VHCs were in the middle concentrations. The mixing ratios of the MP-regulated VHCs remained the same concentrations during the air pollution episodes, while the concentrations of MP-unregulated VHCs were generally higher on polluted days than on clean days and increased with the aggravation of the pollution episodes. The mixing ratios of dichlorodifluoromethane and trichlorofluoromethane were higher than Northern Hemisphere (NH) background values, while the mixing ratios of the other 4 MP-regulated VHCs were moderate and similar to the NH background values. All the 9 VHCs with carcinogenic risk might pose potential carcinogenic risks to the exposed populations in the six pollution episodes, while none of the 12 VHCs might pose appreciable non-carcinogenic risks to the exposed populations. Considering the higher concentration levels and higher risk values of 1,2-dichloropropane, 1,2-dichloroethane, carbon tetrachloride and trichloromethane, Beijing needs to further strengthen the control of these VHCs. The analysis of air mass transportation and PMF model showed that regional transportation and leakage of CFCs banks were important sources of VHCs in Beijing, and the contribution of industrial process and solvent usage should not be neglected. The results revealed the effective implementation of the MP in Beijing and its surrounding areas, while further measures are suggested to control the emissions of important VHCs especially from regional transportation and leakage of CFCs banks to reduce the possible health risks to the exposed population.


Subject(s)
Air Pollutants , Air Pollution , Hydrocarbons, Halogenated , Air Pollutants/analysis , Air Pollution/analysis , Beijing , China , Environmental Monitoring , Humans , Risk Assessment
9.
Environ Res ; 204(Pt A): 111982, 2022 03.
Article in English | MEDLINE | ID: mdl-34478729

ABSTRACT

Nitrated aromatic compounds (NACs) constitute a key segment of brown carbon (BrC), thereby contributing to the light-absorbing characteristics of aerosols in the atmosphere. However, until recently, there is a scarcity of research on their generation in the urban environment. The current study is based upon an extensive field study of NACs from fine particle samples obtained at an urban location in Beijing in the spring and summer of 2017, which was characterized by both high anthropogenic volatile organic compounds (VOCs) and high-NOx dominated conditions. The mean total concentration of the nine NACs was 8.58 ng m-3 in spring and 8.54 ng m-3 in summer. In the spring, the most abundant NACs were 4-nitrophenol (33.7%) and 4-nitrocatechol (19.3%), while in the summer, the most abundant NACs were 4-nitroguaiacol (34.9%) and 2, 4-dinitrophenol (23%). Atmospheric NACs were primarily produced from coal combustion (52%) and biomass burning (32%) in spring, and originated from the secondary formation (37%) and traffic (35%) in summer. NO2 could promote the formation of NACs with a significant effect on their compositions, especially for nitrophenols and nitrocatechols. It can also affect the formation of nitrated aerosols and their existing form. Inorganic nitrates were increased to conversion in the daytime when NO2 concentrations were higher than 30 ppb, but the corresponding oxidation products shifted to primarily organic ones at night. The transition was VOC-sensitive regimes for NAC formation, and nitration of toluene was a more important pathway during the campaign in Beijing.


Subject(s)
Air Pollutants , Environmental Pollutants , Volatile Organic Compounds , Aerosols/analysis , Air Pollutants/analysis , Beijing , China , Coal , Environmental Monitoring , Particulate Matter/analysis , Seasons
10.
Environ Pollut ; 285: 117162, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-33965854

ABSTRACT

Ground-level ozone (O3) has become the principal air pollutant in Beijing during recent summers. In this context, an investigation of ambient concentrations and variation characteristics of O3 and its precursors in May and June from 2014 to 2017 in a typical urban area of Beijing was carried out, and the formation sensitivity and different causes of heavy O3 pollution (HOP, daily maximum 8-h O3 (MDA8h O3)>124 ppbv) were analyzed. The results showed that the monthly assessment values of the O3 concentrations (the 90th percentile MDA8h O3 within one month) were highest in May or June from 2014 to 2017, and the values presented an overall increasing trend. During this period, the number of O3 pollution days (MDA8h O3 > 75 ppbv) also showed an increasing trend. During the HOP episodes, the concentrations of volatile organic compounds (VOCs), nitrogen oxides (NOX), and carbon monoxide (CO) were higher than their respective mean values in May and June, and the meteorological conditions were more conducive to atmospheric photochemical reactions. The HOP episodes were mainly caused by local photochemical formation. From 2014 to 2017, O3 formation during the HOP episodes shifted from VOC and NOX mixed-limited to VOC-limited conditions, and O3 formation was most sensitive to anthropogenic VOCs. Six categories of VOC sources were identified, among which vehicular exhaust contributed the most to anthropogenic VOCs. The VOC concentrations and OFPs of anthropogenic sources have decreased significantly in recent years, indicating that VOC control measures have been effective in Beijing. Nevertheless, NOX concentrations did not show an evident decreasing trend in the same period. Therefore, more attention should be devoted to O3 pollution control in May and June; control measure adjustments are needed according to the changes in O3 precursors, and coordinated control of VOCs and NOX should be strengthened in long-term planning.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , Beijing , Environmental Monitoring , Ozone/analysis , Photochemical Processes , Volatile Organic Compounds/analysis
11.
J Environ Sci (China) ; 102: 185-197, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33637243

ABSTRACT

Understanding the formation mechanisms of secondary air pollution is very important for the formulation of air pollution control countermeasures in China. Thus, a large-scale outdoor atmospheric simulation smog chamber was constructed at Chinese Research Academy of Environmental Sciences (the CRAES Chamber), which was designed for simulating the atmospheric photochemical processes under the conditions close to the real atmospheric environment. The chamber consisted of a 56-m3 fluorinated ethylene propylene (FEP) Teflon film reactor, an electrically-driven stainless steel alloy shield, an auxiliary system, and multiple detection instrumentations. By performing a series of characterization experiments, we obtained basic parameters of the CRAES chamber, such as the mixing ability, the background reactivity, and the wall loss rates of gaseous compounds (propene, NO, NO2, ozone) and aerosols (ammonium sulfate). Oxidation experiments were also performed to study the formation of ozone and secondary organic aerosol (SOA), including α-pinene ozonolysis, propene and 1,3,5-trimethylbenzene photooxidation. Temperature and seed effects on the vapor wall loss and SOA yields were obtained in this work: higher temperature and the presence of seed could reduce the vapor wall loss; SOA yield was found to depend inversely on temperature, and the presence of seed could increase SOA yield. The seed was suggested to be used in the chamber to reduce the interaction between the gas phase and chamber walls. The results above showed that the CRAES chamber was reliable and could meet the demands for investigating tropospheric chemistry.


Subject(s)
Air Pollutants , Smog , Aerosols/analysis , Air Pollutants/analysis , China , Photochemical Processes , Smog/analysis
12.
J Environ Sci (China) ; 95: 190-200, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32653179

ABSTRACT

Atmospheric volatile organic compounds (VOCs) were observed by an on-line gas chromatography-flame ionization detector monitoring system from November 2016 to August 2017 in Beijing. The average concentrations were winter (40.27 ± 25.25 µg/m3) > autumn (34.25 ± 19.90 µg/m3) > summer (32.53 ± 17.39 µg/m3) > spring (24.72 ± 17.22 µg/m3). Although benzene (15.70%), propane (11.02%), ethane (9.32%) and n-butane (6.77%) were the most abundant species, ethylene (14.07%) and propene (11.20%) were the key reactive species to ozone formation potential (OFP), and benzene, toluene, ethylbenzene, m-xylene + p-xylene and o-xylene (54.13%) were the most reactive species to secondary organic aerosol formation potential (SOAFP). The diurnal and seasonal variations indicated that diesel vehicle emission during early morning, gasoline vehicle emission at the traffic rush hours and coal burning during the heating period might be important sources. Five major sources were further identified by positive matrix factorization (PMF). The vehicle exhaust (gasoline exhaust and diesel exhaust) was found to be contributed most to atmospheric VOCs, with 43.59%, 41.91%, 50.45% and 43.91%, respectively in spring, summer, autumn and winter; while solvent usage contributed least, with 11.10%, 7.13%, 14.00% and 19.87%, respectively. Biogenic emission sources (13.11%) were only identified in summer. However, both vehicle exhaust and solvent usage were identified to be the key sources considering contributions to the OFP and SOAFP. Besides, the contributions of combustion during heating period and gasoline evaporation source during warm seasons to OFP and SOAFP should not be overlooked.


Subject(s)
Air Pollutants/analysis , Volatile Organic Compounds/analysis , Beijing , China , Environmental Monitoring , Vehicle Emissions/analysis
13.
J Environ Sci (China) ; 95: 225-239, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32653184

ABSTRACT

Benzene homologues are important chemical precursors to the formation of ground-level ozone and secondary organic aerosol (SOA) in the atmosphere, in addition, some toxic species are harmful to human health. Strict countermeasures have been taken to fight air pollution since 2013, and total amount control of volatile organic compounds is being promoted in China at present. Therefore, it is important to understand the pollution situation and the control status of ambient benzene homologues in China. This paper reviews research progress from published papers on pollution characteristics, atmospheric photochemical reactivity, health risk assessment and source identification of ambient benzene homologues in recent years in China, and also summarizes policies and countermeasures for the control of ambient benzene homologues and the relevant achievements. The total ambient levels of benzene, toluene, ethylbenzene and xylenes (BTEX) shows a declining tendency from 2001 to 2016 in China. The mass concentrations of BTEX are generally higher in southern regions than in northern regions, and they present vertical decreasing variation characteristics with increasing altitude within the height range of about 5500 m. Toluene has the highest ozone formation potential and SOA formation potential both in urban areas and background areas, while benzene poses an obvious carcinogenic risk to the exposed adult populations in urban areas. Source identification of ambient benzene homologues suggested that local governments should adopt differentiated control strategies for ambient benzene homologues. Several recommendations are put forward for future research and policy-making on the control of ambient benzene homologues in China.


Subject(s)
Air Pollutants/analysis , Benzene , Adult , Benzene Derivatives/analysis , China , Environmental Monitoring , Humans , Risk Assessment , Toluene/analysis , Xylenes
14.
Am J Clin Nutr ; 107(3): 371-388, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29566194

ABSTRACT

Background: A newly developed dietary inflammatory index (DII) to evaluate the inflammatory potential of diets was published recently. Many studies have investigated the link between diet-related inflammation and human cancer risk, but the results remain controversial. Objective: We sought to determine the dose-response relation between DII and human cancer risk based on published epidemiologic literature. Design: To summarize evidence, we performed a dose-response meta-analysis to investigate the association between DII and cancer incidence. We systematically searched PubMed, Embase, Web of Science, and the Cochrane library up to 5 November 2017. After data extraction, pooled RRs were calculated and dose-response analyses were performed using a restricted cubic spline model with 4 knots. Subgroup analyses, sensitivity analyses, and tests for publication bias were also performed. Results: In all, 44 high-quality studies with 1,082,092 participants were included. The results showed that an elevated DII (continuous-RR: 1.13; 95% CI: 1.09, 1.16; category DIIhighest vs lowest-RR: 1.58; 95% CI: 1.45, 1.72) independently indicated higher cancer risk except for lung cancer and Australian studies. A linear dose-response relation between DII and overall cancer risk was found, with an 8.3% increase in the risk of cancer per DII score. The pooled RR of DII and cancer risk was 1.86 (95% CI: 1.63, 2.13) from 30 case-control studies but was lower in 14 prospective cohorts (RR: 1.29; 95% CI: 1.19, 1.40). The sensitivity analysis and Egger's test supported the main results. Conclusions: Our analysis indicated that higher DII is significantly correlated with cancer risk. More prospective studies with large sample sizes, involving more ethnic groups and different cancer types, are required in the future. This review was registered with PROSPERO as CRD42017077075.


Subject(s)
Diet , Inflammation/epidemiology , Neoplasms/epidemiology , Databases, Factual , Humans , Incidence , Risk Factors
15.
J Mol Cell Biol ; 9(6): 477-488, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29272522

ABSTRACT

Glioma is a complex disease with limited treatment options. Recent advances have identified isocitrate dehydrogenase (IDH) mutations in up to 80% lower grade gliomas (LGG) and in 76% secondary glioblastomas (GBM). IDH mutations are also seen in 10%-20% of acute myeloid leukemia (AML). In AML, it was determined that mutations of IDH and other genes involving epigenetic regulations are early events, emerging in the pre-leukemic stem cells (pre-LSCs) stage, whereas mutations in genes propagating oncogenic signal are late events in leukemia. IDH mutations are also early events in glioma, occurring before TP53 mutation, 1p/19q deletion, etc. Despite these advances in glioma research, studies into other molecular alterations have lagged considerably. In this study, we analyzed currently available databases. We identified EZH2, KMT2C, and CHD4 as important genes in glioma in addition to the known gene IDH1/2. We also showed that genomic alterations of PIK3CA, CDKN2A, CDK4, FIP1L1, or FUBP1 collaborate with IDH mutations to negatively affect patients' survival in LGG. In LGG patients with TP53 mutations or IDH1/2 mutations, additional genomic alterations of EZH2, KMC2C, and CHD4 individually or in combination were associated with a markedly decreased disease-free survival than patients without such alterations. Alterations of EZH2, KMT2C, and CHD4 at genetic level or protein level could perturb epigenetic program, leading to malignant transformation in glioma. By reviewing current literature on both AML and glioma and performing bioinformatics analysis on available datasets, we developed a hypothetical model on the tumorigenesis from premalignant stem cells to glioma.


Subject(s)
Brain Neoplasms/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Epigenesis, Genetic , Glioma/genetics , Isocitrate Dehydrogenase/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Brain Neoplasms/pathology , Disease-Free Survival , Enhancer of Zeste Homolog 2 Protein/genetics , Glioma/pathology , Humans , Isocitrate Dehydrogenase/metabolism , Leukemia, Myeloid, Acute/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Models, Biological , Mutation/genetics , Neoplasm Grading , Neoplasm Proteins/genetics , Stem Cells/metabolism , Survival Analysis , Tumor Suppressor Protein p53/metabolism
16.
Opt Lett ; 42(16): 3149-3152, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28809895

ABSTRACT

In this Letter, we report a 1064 nm continuous wave Nd:YAG planar waveguide laser with an output power of 1544 W based on the structure of the master oscillator power amplification. A fiber laser is used as the master oscillator, and diode laser arrays are used as the pump source of the waveguide laser amplifier. The dimension of the waveguide is 1 mm (T)×10 mm (W)×60 mm (L), and the dual end oblique pumping is adopted with different angles. After a single-pass amplification, the power is scaled from 323 to 1544 W with the pump power of 2480 W, leading to an optical-to-optical efficiency of 49%. At the maximum output, the beam quality M2 are measured to be 2.8 and 7.0 in the guided direction and the unguided direction, respectively. To the best of our knowledge, this is the highest output power of a Nd:YAG planar waveguide laser to date.

17.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 34(5): 752-759, 2017 Oct 01.
Article in Chinese | MEDLINE | ID: mdl-29761962

ABSTRACT

Regurgitation is an abnormal condition happens when left ventricular assist devices (LVADs) operated at a low speed, which causes LVAD to fail to assist natural blood-pumping by heart and thus affects patients' health. According to the degree of regurgitation, three LVAD's regurgitation states were identified in this paper: no regurgitation, slight regurgitation and severe regurgitation. Regurgitation index ( RI), which is presented based on the theory of dynamic closed cavity, is used to grade the regurgitation of LVAD. Numerical results showed that when patients are in exercising, resting and sleeping state, the critical speed between slight regurgitation and no regurgitation are 6 650 r/min, 7 000 r/min and 7 250 r/min, respectively, with corresponding RI of 0.401, 0.300 and 0.238, respectively. And the critical speed between slight regurgitation and severe regurgitation are 5 500 r/min, 6 000 r/min and 6 450 r/min, with corresponding RI of 0.488, 0.359 and 0.284 respectively. In addition, there is a negative relation correction between RI and rotational speed, so that grading the LVAD's regurgitation can be achieved by determining the corresponding critical speed. Therefore, the detective parameter RI based on the signal of flow is proved to be able to grade LVAD's regurgitation states effectively and contribute to the detection of LVAD's regurgitation, which provides theoretical basis and technology support for developing a LVADs controlling system with high reliability.

18.
J Invest Surg ; 29(5): 254-9, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27010682

ABSTRACT

BACKGROUND: Endovenous laser therapy (EVLT) is safe and effective for lower limb venous ulcers. However, severe necrosis and infection in the ulcer area are contraindications of puncture and EVLT. Local bath with ozone gas has been shown to improve the condition of ulcer areas. The aim of this study was to evaluate the clinical efficacy of ozone gas bath combined with EVLT in comparison with EVLT alone for the treatment for lower limb venous ulcers. PATIENTS AND METHODS: Ninety-two patients with venous ulcers were randomized to receive ozone gas bath combined with EVLT (OEVLT group) or EVLT alone (EVLT group). In the OEVLT group, the venous ulcers were preconditioned with ozone gas bath prior to EVLT. The minimum follow-up time was 12 months. The two groups were compared in terms of complete occlusion of the treated veins, ulcer healing ratio, ratio of ulcer recurrence, patient satisfaction, complications, and side effects. RESULTS: There was no significant difference in venous occlusion between the two groups. The ratio of ulcer healing in the OEVLT group was significantly higher than the EVLT group at 12 months follow-up. Patients in the OEVLT group showed better satisfaction and a lower recurrence ratio than the OEVLT group. No severe complications or side effects occurred in either groups. CONCLUSIONS: Ozone gas bath combined with EVLT showed improved efficacy for the treatment of lower limb venous ulcers and lower recurrence ratio comparison with EVLT alone. This procedure is a safe and technically feasible.


Subject(s)
Baths/methods , Laser Therapy/methods , Ozone/therapeutic use , Varicose Ulcer/surgery , Varicose Ulcer/therapy , Aged , Combined Modality Therapy , Female , Gases/therapeutic use , Humans , Leg , Male , Middle Aged , Recurrence , Treatment Outcome , Wound Healing
19.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 33(6): 1075-83, 2016 Dec.
Article in Chinese | MEDLINE | ID: mdl-29714970

ABSTRACT

We propose a control model of the cardiovascular system coupled with a rotary blood pump in the present paper.A new mathematical model of the rotary heart pump is presented considering the hydraulic characteristics and the similarity principle of pumps.A seven-order nonlinear spatial state equation adopting lumped parameter is used to describe the combined cardiovascular-pump model.Pump speed is used as the control variable.To achieve sufficient perfusion and to avoid suction,a feedback strategy based on minimum(diastolic)pump flow is used in the control model.The results showed that left ventricular assist device(LVAD)could improve hemodynamics of the cardiovascular system of the patient with heart failure in open loop.When rotation speed was 9,000r/min,cardiac output reached 82mL/s while the initial cardiac output was only 34mL/s without the LVAD support.When the rotation speed was above 12 800r/min,suction was found because the high rotating speed resulted in insufficient venous return volume.Suction was avoided by adopting the feedback control.The model reveals the interaction of LVAD and the cardiovascular system,which provides theoretical basis for the therapy of heart failure in the left ventricular and for the design of a physiological control strategy.


Subject(s)
Heart Failure/physiopathology , Heart-Assist Devices , Hemodynamics , Models, Cardiovascular , Ventricular Function, Left , Computer Simulation , Equipment Design , Humans
20.
Nat Prod Commun ; 5(2): 223-6, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20334131

ABSTRACT

Two flavonoids with an unusual 2',4',5'-trisubstituted B-ring (1 and 2), four myricetin derivatives (3-methylmyricetin-3'-O-beta-D-xylopyranoside (3), myricetin-3-O-alpha-L-rhamnopyranoside, myricetin-3-O-beta-D-galactopyranoside, and 3-methylmyricetin), and myricetin were isolated from the roots of Pteroxygonum giraldii Damm. & Diels. Their structures were elucidated using various spectroscopic methods and acid hydrolysis. Compound 1 was a new flavonoid and the NMR spectroscopic data of compounds 2 and 3 are reported for the first time.


Subject(s)
Flavonoids/chemistry , Polygonaceae/chemistry , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...