Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Hepatology ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683582

ABSTRACT

BACKGROUND AND AIMS: HCC, particularly the multifocal HCC, features aggressive invasion and dismal prognosis. Locoregional treatments were often refractory to eliminate tumor tissue, resulting in residual tumor cells persisting and subsequent progression. Owing to problematic delivery to the tumor tissue, systemic therapies, such as lenvatinib (LEN) therapy, show limited clinical benefit in preventing residual tumor progression. Therefore, more advanced strategies for postablative multifocal HCC are urgently needed. APPROACH AND RESULTS: Motivated by the chemotaxis in tumor penetration of macrophages, we report a strategy named microinvasive ablation-guided macrophage hitchhiking for the targeted therapy toward HCC. In this study, the strategy leverages the natural inflammatory gradient induced by ablation to guide LEN-loaded macrophages toward tumor targeting, which increased by ~10-fold the delivery efficiency of LEN in postablative HCC in vivo. Microinvasive ablation-guided macrophage hitchhiking has demonstrated significant antitumor activity in various HCC models, including the hydrodynamic tail vein injection multifocal HCC mouse model and the orthotopic xenograft HCC rabbit model, systematically inhibiting residual tumor progression after ablation and prolonging the median survival of tumor-bearing mice. The potential antitumor mechanism was explored using techniques such as flow cytometry, ELISA, and immunohistochemistry. We found that the strategy significantly suppressed tumor cell proliferation and neovascularization, and such enhanced delivery of LEN stimulated systemic immune responses and induced durable immune memory. CONCLUSIONS: The macrophage hitchhiking strategy demonstrates exceptional therapeutic efficacy and biosafety across various species, offering promising prospects for clinical translation in controlling residual tumor progression and improving outcomes following HCC ablation.

2.
Adv Healthc Mater ; 13(15): e2400414, 2024 06.
Article in English | MEDLINE | ID: mdl-38412402

ABSTRACT

Recently, magnetically actuated micro/nanorobots hold extensive promises in biomedical applications due to their advantages of noninvasiveness, fuel-free operation, and programmable nature. While effectively promised in various fields such as targeted delivery, most past investigations are mainly displayed in magnetic control of individual micro/nanorobots. Facing practical medical use, the micro/nanorobots are required for the development of swarm control in a closed-loop control manner. This review outlines the recent developments in magnetic micro/nanorobot swarms, including their actuating fundamentals, designs, controls, and biomedical applications. The fundamental principles and interactions involved in the formation of magnetic micro/nanorobot swarms are discussed first. The recent advances in the design of artificial and biohybrid micro/nanorobot swarms, along with the control devices and methods used for swarm manipulation, are presented. Furthermore, biomedical applications that have the potential to achieve clinical application are introduced, such as imaging-guided therapy, targeted delivery, embolization, and biofilm eradication. By addressing the potential challenges discussed toward the end of this review, magnetic micro/nanorobot swarms hold promise for clinical treatments in the future.


Subject(s)
Robotics , Humans , Robotics/instrumentation , Magnetics , Equipment Design , Animals , Nanotechnology/methods
3.
Adv Healthc Mater ; 13(9): e2303222, 2024 04.
Article in English | MEDLINE | ID: mdl-38296257

ABSTRACT

Nanozyme mediated catalytic therapy is an attractive strategy for cancer therapy. However, the nanozymes are tended to assemble into 3D architectures, resulting in poor catalytic efficiency for therapy. This study designs the assembly of nanozymes and natural enzymes into the layered structures featuring hexagonal pores as nanozyme clusterphene and investigates their catalytic therapy with the assistance of electric field. The nanozyme-based clusterphene consists of polyoxometalate (POM) and natural glucose oxidase (GOx), named POMG-based clusterphene, which facilitate multi-enzyme activities including peroxidase (POD), catalase (CAT), and glutathione oxidase (GPx). The highly ordered layers with hexagonal pores of POMG units significantly improve the peroxidase-like (POD-like) activity of the nanozyme and thus the sustained production of reactive oxygen species (ROS). At the same time, GOx can increase endogenous H2O2 and produce gluconic acid while consuming glucose, the nutrient of tumor cell growth. The results indicate that the POD-like activity of POMG-based clusterphene increase approximately sevenfold under electrical stimulation compared with Nd-substituted keggin type POM cluster (NdPW11). The experiments both in vitro and in vivo show that the proposed POMG-based clusterphene mediated cascade catalytic therapy is capable of efficient tumor inhibiting and preventing tumor proliferation in tumor-bearing mice model, promising as an excellent candidate for catalytic therapy.


Subject(s)
Hydrogen Peroxide , Neoplasms , Animals , Mice , Peroxidases , Peroxidase , Catalysis , Cell Cycle , Glucose Oxidase , Neoplasms/drug therapy , Tumor Microenvironment
4.
J Mater Chem B ; 11(48): 11483-11495, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38054245

ABSTRACT

Synthetic micro/nanomotors have attracted considerable attention due to their promising potential in the field of biomedicine. Despite their great potential, major micromotors require chemical fuels or complex devices to generate external physical fields for propulsion. Therefore, for future practical medical and environmental applications, Mg-based micromotors that exhibit water-powered movement and thus eliminate the need for toxic fuels, and that display optimal biocompatibility and biodegradability, are attracting attention. In this review, we summarized the recent microarchitectural design of Mg-based micromotors for biomedical applications. We also highlight the mechanism for realizing their water-powered motility. Furthermore, recent biomedical and environmental applications of Mg-based micromotors are introduced. We envision that advanced Mg-based micromotors will have a profound impact in biomedicine.


Subject(s)
Microtechnology , Water
5.
Ultrason Sonochem ; 101: 106724, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38100894

ABSTRACT

The dual-transducer support structure discussed has the advantages of a simple structure and low cost, as well as allowing for the use of both Traveling-Wave (TW) and Standing-Wave (SW) acoustic transportation, supporting its use in pharmaceutical and biochemical analysis, for example. By adjusting the distance between the vibrating plate and the reflector which forms SW field in the y direction, the control of the position of the SW nodes or the TW component along the x direction allows the formation of a Two-Dimensional Standing Wave (2D-SW) or a Traveling Wave (TW) acoustic field, and these could be used for transportation in the x direction. It has been found that the x position of the SW nodes can be adjusted through changing the temporal phase shift, θ, which permits multiple objects to be transported using the 2D-SW mode. By comparison, TWs in the opposite direction could be generated at a pair of specific temporal phase shifts, allowing fast transportation using the TW mode. In this research work, an experiment has been carried out to transport polystyrene spheres using the two modes by programming the temporal phase shift, θ, this illustrating that precise position control of the multiple objects transported was possible using the 2D-SW mode, while high-speed transportation (up to 540 mm/s) was realized using the TW mode, showing that the dual-transducer support structure could be used effectively for accurate and fast transportation. As a fully non-contact method, the dual-transducer support structure can be seen to work in the 2D-SW mode for reaction synthesis or detection applications, and also in TW mode for rapid sample transportation applications.

6.
Vet Immunol Immunopathol ; 266: 110682, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38000215

ABSTRACT

Bovine natural killer (bNK) cells are heterogeneous cell populations defined by constitutive expression of the natural cytotoxicity receptor, NKp46 (CD335). Two major subsets of bNK cells, classified by differential expression of CD2, display divergent functions in innate immunity, and are hypothesised to contribute to adaptive immunity following vaccination. Here we characterised phenotypic variation of bNK cells within afferent lymph and lymph node (LN) tissues and between CD2+ and CD2- bNK subsets, and report phenotypic changes induced by BCG vaccination. CD2- bNK cells, which dominate in the afferent lymph and LN, displayed lower expression of the activation marker CD25 within the LN, with CD25+ cells being less than half as frequent as in afferent lymph. Furthermore, we found bNK cells had a lower expression of CD45RB, associated in cattle with naïve cell status, within LN compared to afferent lymph. Following BCG vaccination, bNK cells in afferent lymph draining the vaccination site showed increased CD2-CD25+ frequencies and increased expression of CD25 on CD2+ bNK cells, although the frequency of these cells remained unchanged. In summary, we provide an overview of the phenotype of bNK cells within bovine lymphatic tissues, and provide an indication of how subsets may diverge following BCG vaccination.


Subject(s)
BCG Vaccine , Killer Cells, Natural , Animals , Cattle , Immunity, Innate , Lymph Nodes , Vaccination/veterinary
7.
Vet Immunol Immunopathol ; 266: 110681, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37992576

ABSTRACT

Macrophage colony-stimulating factor (CSF1) controls the proliferation and differentiation of cells of the mononuclear phagocyte system through binding to the receptor CSF1R. The expression and function of CSF1 has been well-studied in rodents and humans, but knowledge is lacking in other veterinary species. The development of a novel mouse anti-porcine CSF1 monoclonal antibody (mAb) facilitates the characterisation of this growth factor in pigs. Cell surface expression of CSF1 was confirmed on differentiated macrophage populations derived from blood and bone marrow monocytes, and on lung resident macrophages, the first species for this to be confirmed. However, monocytes isolated from blood and bone marrow lacked CSF1 expression. This species-specific mAb delivers the opportunity to further understanding of porcine myeloid cell biology. This is not only vital for the role of pigs as a model for human health, but also as a veterinary species of significant economic and agricultural importance.


Subject(s)
Antibodies, Monoclonal , Macrophage Colony-Stimulating Factor , Swine , Mice , Animals , Humans , Macrophages , Monocytes , Mononuclear Phagocyte System/metabolism
8.
Front Immunol ; 14: 1273661, 2023.
Article in English | MEDLINE | ID: mdl-37954617

ABSTRACT

Conventional dendritic cells (cDCs) are antigen-presenting cells (APCs) that play a central role in linking innate and adaptive immunity. cDCs have been well described in a number of different mammalian species, but remain poorly characterised in the chicken. In this study, we use previously described chicken cDC specific reagents, a novel gene-edited chicken line and single-cell RNA sequencing (scRNAseq) to characterise chicken splenic cDCs. In contrast to mammals, scRNAseq analysis indicates that the chicken spleen contains a single, chemokine receptor XCR1 expressing, cDC subset. By sexual maturity the XCR1+ cDC population is the most abundant mononuclear phagocyte cell subset in the chicken spleen. scRNAseq analysis revealed substantial heterogeneity within the chicken splenic XCR1+ cDC population. Immature MHC class II (MHCII)LOW XCR1+ cDCs expressed a range of viral resistance genes. Maturation to MHCIIHIGH XCR1+ cDCs was associated with reduced expression of anti-viral gene expression and increased expression of genes related to antigen presentation via the MHCII and cross-presentation pathways. To visualise and transiently ablate chicken XCR1+ cDCs in situ, we generated XCR1-iCaspase9-RFP chickens using a CRISPR-Cas9 knockin transgenesis approach to precisely edit the XCR1 locus, replacing the XCR1 coding region with genes for a fluorescent protein (TagRFP), and inducible Caspase 9. After inducible ablation, the chicken spleen is initially repopulated by immature CD1.1+ XCR1+ cDCs. XCR1+ cDCs are abundant in the splenic red pulp, in close association with CD8+ T-cells. Knockout of XCR1 prevented this clustering of cDCs with CD8+ T-cells. Taken together these data indicate a conserved role for chicken and mammalian XCR1+ cDCs in driving CD8+ T-cells responses.


Subject(s)
CD8-Positive T-Lymphocytes , Chickens , Animals , Antigen Presentation , Dendritic Cells , Cross-Priming , Mammals
9.
Sci Adv ; 9(18): eadg4501, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37146139

ABSTRACT

Swimming microrobots guided in the circulation system offer considerable promise in precision medicine but currently suffer from problems such as limited adhesion to blood vessels, intensive blood flow, and immune system clearance-all reducing the targeted interaction. A swimming microrobot design with clawed geometry, a red blood cell (RBC) membrane-camouflaged surface, and magnetically actuated retention is discussed, allowing better navigation and inspired by the tardigrade's mechanical claw engagement, coupled to an RBC membrane coating, to minimize blood flow impact. Using clinical intravascular optical coherence tomography in vivo, the microrobots' activity and dynamics in a rabbit jugular vein was monitored, illustrating very effective magnetic propulsion, even against a flow of ~2.1 cm/s, comparable with rabbit blood flow characteristics. The equivalent friction coefficient with magnetically actuated retention is elevated ~24-fold, compared to magnetic microspheres, achieving active retention at 3.2 cm/s, for >36 hours, showing considerable promise across biomedical applications.


Subject(s)
Cardiovascular System , Swimming , Animals , Rabbits , Swimming/physiology , Magnetics
11.
Adv Healthc Mater ; 11(21): e2201733, 2022 11.
Article in English | MEDLINE | ID: mdl-36050895

ABSTRACT

Manganese (Mn) has attracted widespread attention due to its low-cost, nontoxicity, and valence-rich transition. Various Mn-based nanomaterials have sprung up and are employed in diverse fields, particularly Mn-based nanozymes, which combine the physicochemical properties of Mn-based nanomaterials with the catalytic activity of natural enzymes, and are attracting a surge of research, especially in the field of biomedical research. In this review, the typical preparation strategies, catalytic mechanisms, advances and perspectives of Mn-based nanozymes for biomedical applications are systematically summarized. The application of Mn-based nanozymes in tumor therapy and sensing detection, together with an overview of their mechanism of action is highlighted. Finally, the prospective directions of Mn-based nanozymes from five perspectives: innovation, activity enhancement, selectivity, biocompatibility, and application broadening are discussed.


Subject(s)
Manganese , Nanostructures , Manganese/chemistry , Prospective Studies , Catalysis , Nanostructures/chemistry , Ions
12.
J Mater Chem B ; 10(37): 7556-7562, 2022 09 28.
Article in English | MEDLINE | ID: mdl-35775603

ABSTRACT

The toxicity effects of paclitaxel (PTX)-loaded magnetic neutrophil-hybrid swimming microrobots ("neutrobots") in vivo were assessed after intravenous administration to mice. The mice after 72 hours exhibited minimal immunotoxicity and liver and kidney toxicity at an administration dose of 3 × 106 PTX-loaded neutrobots. The minor toxicity of drug-loaded neutrobots holds considerable promise for biomedical applications.


Subject(s)
Containment of Biohazards , Paclitaxel , Animals , Mice , Paclitaxel/therapeutic use
13.
ACS Nano ; 16(6): 9317-9328, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35576530

ABSTRACT

Utilizing bottom-up controllable molecular assembly, the bio-inspired polyelectrolyte multilayer conical nanoswimmers with gold-nanoshell functionalization on different segments are presented to achieve the optimal upstream propulsion performance. The experimental investigation reveals that the presence of the gold nanoshells on the big openings of the nanoswimmers could not only bestow efficient directional propulsion but could also minimize the impact from the external flow. The gold nanoshells at the big openings of nanoswimmers facilitate the acoustically powered propulsion against a flow velocity of up to 2.00 mm s-1, which is higher than the blood velocity in capillaries and thus provides a proof-of-concept design for upstream nanoswimmers.


Subject(s)
Nanoshells , Polymers , Gold
14.
Immunology ; 165(2): 171-194, 2022 02.
Article in English | MEDLINE | ID: mdl-34767637

ABSTRACT

Conventional dendritic cells (cDC) are bone marrow-derived immune cells that play a central role in linking innate and adaptive immunity. cDCs efficiently uptake, process and present antigen to naïve T cells, driving clonal expansion of antigen-specific T-cell responses. In chicken, vital reagents are lacking for the efficient and precise identification of cDCs. In this study, we have developed several novel reagents for the identification and characterization of chicken cDCs. Chicken FLT3 cDNA was cloned and a monoclonal antibody to cell surface FLT3 was generated. This antibody identified a distinct FLT3HI splenic subset which lack expression of signature markers for B cells, T cells or monocyte/macrophages. By combining anti-FLT3 and CSF1R-eGFP transgenic expression, three major populations within the mononuclear phagocyte system were identified in the spleen. The cDC1 subset of mammalian cDCs express the chemokine receptor XCR1. To characterize chicken cDCs, a synthetic chicken chemokine (C motif) ligand (XCL1) peptide conjugated to Alexa Fluor 647 was developed (XCL1AF647 ). Flow cytometry staining of XCL1AF647 on splenocytes showed that all chicken FLT3HI cells exclusively express XCR1, supporting the hypothesis that this population comprises bona fide chicken cDCs. Further analysis revealed that chicken cDCs expressed CSF1R but lacked the expression of CSF2R. Collectively, the cell surface phenotypes of chicken cDCs were partially conserved with mammalian XCR1+ cDC1, with distinct differences in CSF1R and CSF2R expression compared with mammalian orthologues. These original reagents allow the efficient identification of chicken cDCs to investigate their important roles in the chicken immunity and diseases.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , fms-Like Tyrosine Kinase 3/metabolism , Animals , Antibodies, Monoclonal , Biomarkers , Cell Culture Techniques , Chickens , Fluorescent Antibody Technique , Gene Expression , Humans , Immunophenotyping , Receptors, G-Protein-Coupled/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , fms-Like Tyrosine Kinase 3/genetics
15.
ACS Appl Mater Interfaces ; 13(25): 29340-29348, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34137582

ABSTRACT

We demonstrate a versatile nanoparticle with imaging-guided chemo-photothermal synergistic therapy and EpCAM-targeted delivery of liver tumor cells. EpCAM antibody (anti-EpCAM) and Pt(IV) were grafted onto the polydopamine carbon dots (PDA-CDs) by the amidation reaction. The EpCAM antibody of particles enables the targeted interaction with liver progenitor cells due to their overexpressed EpCAM protein. The tetravalent platinum prodrug [Pt(IV)] induces apoptosis with minimum toxic side effects through the interaction between cisplatin and tumor cell DNA. The nanoparticles displayed stable photothermal property and considerable anti-tumor therapeutic effect in vivo. Coupling with cellular imaging due to their fluorescence property, anti-EpCAM@PDA-CDs@Pt(IV) offers a convenient and effective platform for imaging-guided chemo-photothermal synergistic therapy toward liver cancers in the near future.


Subject(s)
Antineoplastic Agents , Epithelial Cell Adhesion Molecule/metabolism , Fluorescent Dyes , Indoles , Polymers , Quantum Dots , Animals , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Female , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacokinetics , Fluorescent Dyes/pharmacology , HeLa Cells , Hep G2 Cells , Humans , Indoles/chemistry , Indoles/pharmacokinetics , Liver Neoplasms/metabolism , Mice , Mice, Inbred BALB C , Polymers/chemistry , Polymers/pharmacokinetics , Quantum Dots/chemistry , Quantum Dots/metabolism , Theranostic Nanomedicine/methods
16.
Sci Robot ; 6(52)2021 03 24.
Article in English | MEDLINE | ID: mdl-34043546

ABSTRACT

Swimming biohybrid microsized robots (e.g., bacteria- or sperm-driven microrobots) with self-propelling and navigating capabilities have become an exciting field of research, thanks to their controllable locomotion in hard-to-reach areas of the body for noninvasive drug delivery and treatment. However, current cell-based microrobots are susceptible to immune attack and clearance upon entering the body. Here, we report a neutrophil-based microrobot ("neutrobot") that can actively deliver cargo to malignant glioma in vivo. The neutrobots are constructed through the phagocytosis of Escherichia coli membrane-enveloped, drug-loaded magnetic nanogels by natural neutrophils, where the E. coli membrane camouflaging enhances the efficiency of phagocytosis and also prevents drug leakage inside the neutrophils. With controllable intravascular movement upon exposure to a rotating magnetic field, the neutrobots could autonomously aggregate in the brain and subsequently cross the blood-brain barrier through the positive chemotactic motion of neutrobots along the gradient of inflammatory factors. The use of such dual-responsive neutrobots for targeted drug delivery substantially inhibits the proliferation of tumor cells compared with traditional drug injection. Inheriting the biological characteristics and functions of natural neutrophils that current artificial microrobots cannot match, the neutrobots developed in this study provide a promising pathway to precision biomedicine in the future.


Subject(s)
Drug Delivery Systems/instrumentation , Nanoparticle Drug Delivery System , Neutrophils/physiology , Robotics/instrumentation , Animals , Blood-Brain Barrier , Brain Neoplasms/drug therapy , Cell Line, Tumor , Chemotaxis , Doxorubicin/administration & dosage , Equipment Design , Escherichia coli , Gels , Glioma/drug therapy , Magnetics , Magnetite Nanoparticles , Mice , Motion , Phagocytosis
17.
Front Immunol ; 12: 653085, 2021.
Article in English | MEDLINE | ID: mdl-33841436

ABSTRACT

Eimeria maxima is a common cause of coccidiosis in chickens, a disease that has a huge economic impact on poultry production. Knowledge of immunity to E. maxima and the specific mechanisms that contribute to differing levels of resistance observed between chicken breeds and between congenic lines derived from a single breed of chickens is required. This study aimed to define differences in the kinetics of the immune response of two inbred lines of White Leghorn chickens that exhibit differential resistance (line C.B12) or susceptibility (line 15I) to infection by E. maxima. Line C.B12 and 15I chickens were infected with E. maxima and transcriptome analysis of jejunal tissue was performed at 2, 4, 6 and 8 days post-infection (dpi). RNA-Seq analysis revealed differences in the rapidity and magnitude of cytokine transcription responses post-infection between the two lines. In particular, IFN-γ and IL-10 transcript expression increased in the jejunum earlier in line C.B12 (at 4 dpi) compared to line 15I (at 6 dpi). Line C.B12 chickens exhibited increases of IFNG and IL10 mRNA in the jejunum at 4 dpi, whereas in line 15I transcription was delayed but increased to a greater extent. RT-qPCR and ELISAs confirmed the results of the transcriptomic study. Higher serum IL-10 correlated strongly with higher E. maxima replication in line 15I compared to line C.B12 chickens. Overall, the findings suggest early induction of the IFN-γ and IL-10 responses, as well as immune-related genes including IL21 at 4 dpi identified by RNA-Seq, may be key to resistance to E. maxima.


Subject(s)
Chickens/immunology , Coccidiosis/veterinary , Disease Susceptibility/immunology , Eimeria/immunology , Poultry Diseases/immunology , Animals , Chickens/parasitology , Coccidiosis/immunology , Coccidiosis/parasitology , Coccidiosis/pathology , Gene Expression Regulation/immunology , Interferon-gamma/genetics , Interleukin-10/genetics , Interleukins/genetics , Jejunum/immunology , Jejunum/parasitology , Jejunum/pathology , Poultry Diseases/parasitology , Poultry Diseases/pathology , RNA-Seq
18.
ACS Nano ; 15(3): 5118-5128, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33687190

ABSTRACT

Micro- and nanomachines as feasible agents to exploit the microworld have attracted extensive research interest, particularly in the manipulation of soft nanorobots at small scales. Herein, we propose a model for regulating the motion of a swinging flexible nanomotor (SFN) driven by an oscillating magnetic field. Multisegments of an SFN are synthesized from nickel, gold, and porous silver. The coupling of magnetic actuation and the swinging pattern of SFNs are studied to reveal their mobility. Additionally, an optimal frequency occurs from the coupling of magnetic torque and structural deformation, rather than the simply considered step-out phenomenon. Meanwhile, a fluidic trapping region is formulated alongside the SFN. Such a trapping region is demonstrated by trapping a living neutrophil and accomplishing in vitro transportation using fluidic mediation. On-demand cargo delivery can be realized using a programmable magnetic field, and SFNs can be recycled with ease after manipulation owing to environmental concerns. In this study, we demonstrated the properties of SFNs that are useful bases for their customization and control. These flexible nanomotors may have the potential to promote drug delivery and biomedical operations in noncontact modes.


Subject(s)
Gait Analysis , Magnetics , Drug Delivery Systems , Magnetic Fields , Motion
19.
Int J Pept Res Ther ; 27(2): 1027-1042, 2021.
Article in English | MEDLINE | ID: mdl-33424523

ABSTRACT

Helicobacter pylori (H. pylori) is a gram-negative spiral bacterium that caused infections in half of the world's population and had been identified as type I carcinogen by the World Health Organization. Compared with antibiotic treatment which could result in drug resistance, the vaccine therapy is becoming a promising immunotherapy option against H. pylori. Further, the multi-epitope vaccine could provoke a wider immune protection to control H. pylori infection. In this study, the in-silico immunogenicity calculations on 381 protein sequences of H. pylori were performed, and the immunogenicity of selected proteins with top-ranked score were tested. The B cell epitopes and T cell epitopes from three well performed proteins UreB, PLA1, and Omp6 were assembled into six constructs of multi-epitope vaccines with random orders. In order to select the optimal constructs, the stability of the vaccine structure and the exposure of B cell epitopes on the vaccine surface were evaluated based on structure prediction and solvent accessible surface area analysis. Finally Construct S1 was selected and molecular docking showed that it had the potential of binding TLR2, TLR4, and TLR9 to stimulate strong immune response. In particular, this study provides good suggestions for epitope assembly in the construction of multi-epitope vaccines and it may be helpful to control H. pylori infection in the future. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s10989-020-10148-x) contains supplementary material, which is available to authorized users.

20.
Sci Rep ; 11(1): 1376, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33446790

ABSTRACT

The ecosystem of the Source Region of Yangtze River (SRYR) is highly susceptible to climate change. In this study, the spatial-temporal variation of NPP from 2000 to 2014 was analyzed, using outputs of Carnegie-Ames-Stanford Approach model. Then the correlation characteristics of NPP and climatic factors were evaluated. The results indicate that: (1) The average NPP in the SRYR is 100.0 gC/m2 from 2000 to 2014, and it shows an increasing trend from northwest to southeast. The responses of NPP to altitude varied among the regions with the altitude below 3500 m, between 3500 to 4500 m and above 4500 m, which could be attributed to the altitude associated variations of climatic factors and vegetation types; (2) The total NPP of SRYR increased by 0.18 TgC per year in the context of the warmer and wetter climate during 2000-2014. The NPP was significantly and positively correlated with annual temperature and precipitation at interannual time scales. Temperature in February, March, May and September make greater contribution to NPP than that in other months. And precipitation in July played a more crucial role in influencing NPP than that in other months; (3) Climatic factors caused the NPP to increase in most of the SRYR. Impacts of human activities were concentrated mainly in downstream region and is the primary reason for declines in NPP.

SELECTION OF CITATIONS
SEARCH DETAIL
...