Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 15(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37049564

ABSTRACT

To explore the mechanism by which Akkermansia muciniphila cell-free supernatant improves glucose and lipid metabolisms in Caenorhabditis elegans, the present study used different dilution concentrations of Akkermansia muciniphila cell-free supernatant as an intervention for with Caenorhabditis elegans under a high-glucose diet. The changes in lifespan, exercise ability, level of free radicals, and characteristic indexes of glucose and lipid metabolisms were studied. Furthermore, the expression of key genes of glucose and lipid metabolisms was detected by qRT-PCR. The results showed that A. muciniphila cell-free supernatant significantly improved the movement ability, prolonged the lifespan, reduced the level of ROS, and alleviated oxidative damage in Caenorhabditis elegans. A. muciniphila cell-free supernatant supported resistance to increases in glucose and triglyceride induced by a high-glucose diet and downregulated the expression of key genes of glucose metabolism, such as gsy-1, pygl-1, pfk-1.1, and pyk-1, while upregulating the expression of key genes of lipid metabolism, such as acs-2, cpt-4, sbp-1, and tph-1, as well as down-regulating the expression of the fat-7 gene to inhibit fatty acid biosynthesis. These findings indicated that A. muciniphila cell-free supernatant, as a postbiotic, has the potential to prevent obesity and improve glucose metabolism disorders and other diseases.


Subject(s)
Glucose , Lipid Metabolism , Animals , Glucose/metabolism , Caenorhabditis elegans/metabolism , Verrucomicrobia , Lipids
2.
J Food Biochem ; 45(5): e13737, 2021 05.
Article in English | MEDLINE | ID: mdl-33876445

ABSTRACT

Areca nut and Fuzhuan brick tea, a type of natural plant products, have obvious effects of fat reduction and weight loss; however, there is no report on their synergistic effect. This study investigated the effects of Fuzhuan brick tea supplemented with different concentrations of areca nut (5% (LAF), 10% (MAF), and 20% (HAF)) on serum and gut microbiota in Kunming (KM) mice. The results showed that Fuzhuan brick tea supplemented with areca nuts (AFTs) could reduce weight, prevent the accumulation of fat, inhibit the increase in the levels of serum triglyceride, total cholesterol, low-density lipoprotein cholesterol, blood glucose, free fatty acid, insulin, and total bile acid, alleviate the decrease in high-density lipoprotein cholesterol level, and regulate the composition of gut microbiota by high-fat diet intervention. The HAF group with 20% areca nut content showed the best effect. These results could provide a novel approach to prevent obesity and hyperlipidemia. PRACTICAL APPLICATIONS: Consumption of areca nut and tea is widespread in Asia and other regions. As a controversial raw material, the damage due to areca nut to oral mucosa health has often aroused public concern and heated discussion; however, its medicinal value has been confirmed in terms of its pharmacological effects in various aspects. Fuzhuan brick tea, a type of traditional postfermented dark tea, has been confirmed to exert effects of antiobesity. Therefore, the areca nut and Fuzhuan brick tea, as a type of natural plant products, have obvious effects of fat reduction and weight loss; however, their synergistic effect has not been reported. To our knowledge, this study is the first to explore the effects of the Fuzhuan brick tea supplemented with areca nuts (AFTs) on serum and gut microbiota in mice. On the premise of exerting their beneficial effects (especially in terms of easing food stagnation and eliminating indigestion) and reducing their toxic and side effects, the effects of AFTs on health were further clarified, which could provide a novel direction for the development and utilization of areca nut. Moreover, our research would increase public understanding of areca nut and provide guidance to the Fuzhuan brick tea processing industry.


Subject(s)
Gastrointestinal Microbiome , Animals , Areca , Diet, High-Fat/adverse effects , Mice , Nuts , Tea
3.
Food Res Int ; 137: 109456, 2020 11.
Article in English | MEDLINE | ID: mdl-33233132

ABSTRACT

Traditional dry-cured pork, a meat product with a unique flavor and good chewability, occupies an important place in the Chinese market. However, the salt content of dry-cured pork is on the high side and long-term consumption of high-salt meat products is not good for human health. This study determined the role of salt in volatile organic substances and non-volatile taste components of dry-cured pork. Dry-cured pork samples with different salt content (0%, 1%, 3%, 5%, and 7%) were analyzed by electronic tongue for moisture content, pH, salt (NaCl) value, taste activity value, free amino acids, and taste components and by headspace-gas chromatography-ion mobility spectrometry for volatile organic components. The results showed that the moisture content of the tested samples decreased while the salt content increased. The highest amounts of free amino acids were found in dry-cured pork with 3% salt content (P < 0.05). The highest peak area of volatile organic compounds and the maximal taste indexes were found in dry-cured pork with 3% and 5% salt content.


Subject(s)
Pork Meat , Red Meat , Animals , Electronic Nose , Food Handling , Gas Chromatography-Mass Spectrometry , Humans , Red Meat/analysis , Sodium Chloride , Swine , Taste
4.
J Food Biochem ; 44(11): e13447, 2020 11.
Article in English | MEDLINE | ID: mdl-32910481

ABSTRACT

Long-stamen chive (Allium macrostemon Bunge; AMB), which is prevalent in the Wuling Mountain area of China, is a characteristic food of the nation. In the study, we evaluated the as-yet-unknown nutritional value and antioxidant activity of fresh AMB. The free amino acid content, volatile components, and free radical-scavenging capacity of isolated organic sulfides were analyzed to evaluate the qualitative and physiological properties of fresh AMB. The plant was found to be rich in free essential amino acids and contain multiple flavor-imparting amino acids. The organic sulfides showed an apparent free radical-scavenging activity in vitro. Furthermore, these sulfides alleviated oxidative stress in Caenorhabditis elegans. Notably, the organic sulfides isolated from AMB enhanced the activities of superoxide dismutase, catalase, and glutathione peroxidase; improved motility; and extended the lifespan in oxidative stress-affected nematodes. In conclusion, our study indicates that AMB is a nutritious vegetable with potential to be developed as a functional food. PRACTICAL APPLICATIONS: Long-stamen chive is a wild edible vegetable belonging to the genus Allium (A. macrostemon Bunge; AMB). However, its quality and physiological properties have not been comprehensively investigated. Herein, we analyzed the free amino acid content, composition of volatile compounds, and potential antioxidative properties of AMB. Our results indicated that AMB is rich in essential amino acids, making it a highly nutritious food. Further analysis indicated that AMB contains a high proportion of organic sulfides, which have been previously been shown to have antioxidative properties. Together, our findings indicate that AMB contains important bioactive components and can be developed as a functional food or health supplement. Furthermore, our findings will enhance public awareness regarding this wild resource and provide new directions for the research and development of natural products derived from it.


Subject(s)
Allium , Antioxidants , Oxidative Stress , Animals , Antioxidants/pharmacology , Caenorhabditis elegans , China , Oxidative Stress/drug effects , Sulfides/pharmacology
5.
J Food Biochem ; 44(8): e13249, 2020 08.
Article in English | MEDLINE | ID: mdl-32524635

ABSTRACT

The protective effect of Schisandra chinensis water extract (SWE) on ethanol-induced neurotoxicity in Caenorhabditis elegans and the underlying mechanism were investigated. Young worms were exposed to ethanol or a mixture of ethanol and SWE for 24 hr. Locomotion ability, tissue ethanol concentration, free radical content, antioxidant enzyme activity, lifespan, and expression of key dopaminergic nervous system-related genes were evaluated. Ethanol affected the motion ability of worms and shortened their lifespan. Ethanol intake increased the tissue ethanol concentration, resulting in redox imbalance, and dopamine release and accumulation. SWE alleviated motility loss of C. elegans and extended their lifespan. It reduced the tissue ethanol concentration and free radical content, likely because it alleviated oxidative stress. Finally, SWE inhibited continuous dopamine excitement. These results suggest that SWE plays a protective role in dopaminergic neurons. It can be used to treat ethanol-induced neurotoxicity, and to investigate its potential mechanism. PRACTICAL APPLICATIONS: Schisandra chinensis is a traditional functional food that has protective effects on the liver and brain. Although S. chinensis is found in some anti-alcohol products, the effects of S. chinensis on neurological and behavioral disorders caused by alcohol are rarely reported. The manuscript explored the protective effect of SWE on ethanol-induced nerve injury in Caenorhabditis elegans, and we preliminarily discussed the underlying mechanism. The results suggested that SWE can alleviate ethanol-induced neurotoxicity. Meanwhile, the results provide a theoretical basis for better use of S. chinensis to develop products to antagonize the side effects of alcohol. In addition, the method of using C. elegans model to evaluate the protective effect of S. chinensis on ethanol-induced nerve injury can provide practical reference for the screening and utilization of other plant functional components.


Subject(s)
Schisandra , Animals , Antioxidants , Caenorhabditis elegans , Ethanol/toxicity , Water
6.
Acta Biochim Biophys Sin (Shanghai) ; 36(8): 519-28, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15295643

ABSTRACT

The hmr19 gene was cloned from Streptomyces hygroscopicus subsp. yingchengensis strain 10-22, a bacterium strain producing agricultural antibiotics. Sequence similarity comparison indicates that hmr19 gene may encode a predicted protein with 14 putative transmembrane alpha-helical spanners, belonging to the drug:H(+) antiporter-2 family of the major facilitator superfamily. The expression of hmr19 in the mycelium of strain 10-22 was detected by Western blotting analysis. Gene replacement technology was employed to construct an hmr19 disruption mutant. The growth inhibition test against different antibiotics indicated that the mutant strain was 5-20 fold more susceptible to tetracycline, vancomycin and mitomycin C than the parental wild type strain. The mutant took up tetracycline much faster and accumulated more antibiotics than the wild type strain 10-22. While with the addition of an energy uncoupler, carbonyl cyanide m-chlorophenylhydrazone, the characteristics of the accumulation of [(3)H]tetracycline in these two strains were almost the same. It was thus concluded that hmr19 encoded a multidrug resistance efflux protein.


Subject(s)
Bacterial Proteins/genetics , Genes, Bacterial , Streptomyces/genetics , Amino Acid Sequence , Base Sequence , Chromosome Mapping , Cloning, Molecular , DNA, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Energy Metabolism , Gene Deletion , Genes, MDR , Molecular Sequence Data , Phenotype , Sequence Homology, Amino Acid , Streptomyces/drug effects , Streptomyces/metabolism , Tetracycline/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...