Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Front Pharmacol ; 15: 1400699, 2024.
Article in English | MEDLINE | ID: mdl-38756373

ABSTRACT

The therapeutic effect of chemotherapy and targeted therapy are known to be limited by drug resistance. Substantial evidence has shown that ATP-binding cassette (ABC) transporters P-gp and BCRP are significant contributors to multidrug resistance (MDR) in cancer cells. In this study, we demonstrated that a clinical-staged ATR inhibitor ceralasertib is susceptible to P-gp and BCRP-mediated MDR. The drug resistant cancer cells were less sensitive to ceralasertib compared to the parental cells. Moreover, ceralasertib resistance can be reversed by inhibiting the drug efflux activity of P-gp and BCRP. Interestingly, ceralasertib was able to downregulate the level of P-gp but not BCRP, suggesting a potential regulation between ATR signaling and P-gp expression. Furthermore, computational docking analysis predicted high affinities between ceralasertib and the drug-binding sites of P-gp and BCRP. In summary, overexpression of P-gp and BCRP are sufficient to confer cancer cells resistance to ceralasertib, underscoring their role as biomarkers for therapeutic efficacy.

2.
Drug Resist Updat ; 73: 101028, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340425

ABSTRACT

AIMS: The overexpression of ABC transporters on cancer cell membranes is one of the most common causes of multidrug resistance (MDR). This study investigates the impact of ABCC1 and ABCG2 on the resistance to talazoparib (BMN-673), a potent poly (ADP-ribose) polymerase (PARP) inhibitor, in ovarian cancer treatment. METHODS: The cell viability test was used to indicate the effect of talazoparib in different cell lines. Computational molecular docking analysis was conducted to simulate the interaction between talazoparib and ABCC1 or ABCG2. The mechanism of talazoparib resistance was investigated by constructing talazoparib-resistant subline A2780/T4 from A2780 through drug selection with gradually increasing talazoparib concentration. RESULTS: Talazoparib cytotoxicity decreased in drug-selected or gene-transfected cell lines overexpressing ABCC1 or ABCG2 but can be restored by ABCC1 or ABCG2 inhibitors. Talazoparib competitively inhibited substrate drug efflux activity of ABCC1 or ABCG2. Upregulated ABCC1 and ABCG2 protein expression on the plasma membrane of A2780/T4 cells enhances resistance to other substrate drugs, which could be overcome by the knockout of either gene. In vivo experiments confirmed the retention of drug-resistant characteristics in tumor xenograft mouse models. CONCLUSIONS: The therapeutic efficacy of talazoparib in cancer may be compromised by its susceptibility to MDR, which is attributed to its interactions with the ABCC1 or ABCG2 transporters. The overexpression of these transporters can potentially diminish the therapeutic impact of talazoparib in cancer treatment.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Phthalazines , Humans , Animals , Female , Mice , Ribose/pharmacology , ATP Binding Cassette Transporter, Subfamily B , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Cell Line, Tumor , Molecular Docking Simulation , Drug Resistance, Neoplasm/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Neoplasm Proteins
3.
Bioorg Chem ; 135: 106481, 2023 06.
Article in English | MEDLINE | ID: mdl-36966672

ABSTRACT

Three series of phenylurea indole derivatives were synthesized with potent inhibitory activities on ABCG2 with simple and efficient synthetic routes. Among these compounds, four phenylurea indole derivatives 3c-3f with extended π system were discovered as the most potent ABCG2 inhibitors, while these compounds showed no inhibition on ABCB1. Compounds 3c and 3f were selected for further investigation to explore the mechanisms of action on reversing ABCG2-mediated multidrug resistance (MDR). The results revealed that compounds 3c and 3f increased the accumulation of mitoxantrone (MX) in ABCG2-overexpressing cells, but they did not alter the expression level or localization of ABCG2 in cells. In addition, both 3c and 3f significantly stimulated the ATP hydrolysis of ABCG2 transporter indicating that they can be competitive substrates of ABCG2 transporter, and thereby increase the accumulation of mitoxantrone in ABCG2-overexpressing H460/MX20 cells. Both 3c and 3f was docked into the drug-binding site of the human ABCG2 transporter protein (PDB 6FFC) with high affinities. This study showed that extending the π system of phenylurea indole derivatives enhanced their inhibitory activities on ABCG2, which may provide a clue for the further research to discover more potent ABCG2 inhibitors.


Subject(s)
Antineoplastic Agents , Humans , Antineoplastic Agents/chemistry , Mitoxantrone/pharmacology , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Drug Resistance, Neoplasm , Phenylurea Compounds/pharmacology , Cell Line, Tumor , Indoles/pharmacology , Neoplasm Proteins/metabolism
4.
Signal Transduct Target Ther ; 8(1): 113, 2023 03 11.
Article in English | MEDLINE | ID: mdl-36906600

ABSTRACT

Despite the success of targeted therapies in cancer treatment, therapy-induced resistance remains a major obstacle to a complete cure. Tumor cells evade treatments and relapse via phenotypic switching driven by intrinsic or induced cell plasticity. Several reversible mechanisms have been proposed to circumvent tumor cell plasticity, including epigenetic modifications, regulation of transcription factors, activation or suppression of key signaling pathways, as well as modification of the tumor environment. Epithelial-to-mesenchymal transition, tumor cell and cancer stem cell formation also serve as roads towards tumor cell plasticity. Corresponding treatment strategies have recently been developed that either target plasticity-related mechanisms or employ combination treatments. In this review, we delineate the formation of tumor cell plasticity and its manipulation of tumor evasion from targeted therapy. We discuss the non-genetic mechanisms of targeted drug-induced tumor cell plasticity in various types of tumors and provide insights into the contribution of tumor cell plasticity to acquired drug resistance. New therapeutic strategies such as inhibition or reversal of tumor cell plasticity are also presented. We also discuss the multitude of clinical trials that are ongoing worldwide with the intention of improving clinical outcomes. These advances provide a direction for developing novel therapeutic strategies and combination therapy regimens that target tumor cell plasticity.


Subject(s)
Drug Resistance, Neoplasm , Neoplasms , Humans , Cell Plasticity , Neoplasms/drug therapy , Signal Transduction , Epithelial-Mesenchymal Transition
5.
MedComm (2020) ; 3(4): e175, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36349142

ABSTRACT

Protein phosphorylation is an important post-transcriptional modification involving an extremely wide range of intracellular signaling transduction pathways, making it an important therapeutic target for disease intervention. At present, numerous drugs targeting protein phosphorylation have been developed for the treatment of various diseases including malignant tumors, neurological diseases, infectious diseases, and immune diseases. In this review article, we analyzed 303 small-molecule protein phosphorylation kinase inhibitors (PKIs) registered and participated in clinical research obtained in a database named Protein Kinase Inhibitor Database (PKIDB), including 68 drugs approved by the Food and Drug Administration of the United States. Based on previous classifications of kinases, we divided these human protein phosphorylation kinases into eight groups and nearly 50 families, and delineated their main regulatory pathways, upstream and downstream targets. These groups include: protein kinase A, G, and C (AGC) and receptor guanylate cyclase (RGC) group, calmodulin-dependent protein kinase (CaMK) group, CMGC [Cyclin-dependent kinases (CDKs), Mitogen-activated protein kinases (MAPKs), Glycogen synthase kinases (GSKs), and Cdc2-like kinases (CLKs)] group, sterile (STE)-MAPKs group, tyrosine kinases (TK) group, tyrosine kinase-like (TKL) group, atypical group, and other groups. Different groups and families of inhibitors stimulate or inhibit others, forming an intricate molecular signaling regulatory network. This review takes newly developed new PKIs as breakthrough point, aiming to clarify the regulatory network and relationship of each pathway, as well as their roles in disease intervention, and provide a direction for future drug development.

6.
Front Oncol ; 12: 949868, 2022.
Article in English | MEDLINE | ID: mdl-35992866

ABSTRACT

Colorectal cancer is a major health problem, and it is the third most diagnosed cancer in the United States. The current treatment for colorectal cancer includes irinotecan, a topoisomerase I inhibitor, and other targeted drugs, such as bevacizumab and regorafenib. The low response rates and incidence of high toxicity caused by these drugs instigated an evaluation of the anticancer efficacy of a series of 13 thiazolyl hydrazone derivatives of 1-indanone, and four compounds among them show favorable anticancer activity against some of the tested colorectal cancer cell lines with IC50 values ranging from 0.41 ± 0.19 to 6.85 ± 1.44 µM. It is noteworthy that one of the indanone-based thiazolyl hydrazone (ITH) derivatives, N-Indan-1-ylidene-N'-(4-Biphenyl-4-yl-thiazol-2-yl)-hydrazine (ITH-6), has a better cytotoxicity profile against p53 mutant colorectal cancer cells HT-29, COLO 205, and KM 12 than a p53 wild-type colorectal cancer cell line, such as HCT 116. Mechanistic studies show that ITH-6 arrests these three cancer cell lines in the G2/M phase and induces apoptosis. It also causes a rise in the reactive oxygen species level with a remarkable decrease in the glutathione (GSH) level. Moreover, ITH-6 inhibits the expression of NF-κB p65 and Bcl-2, which proves its cytotoxic action. In addition, ITH-6 significantly decreased tumor size, growth rate, and tumor volume in mice bearing HT-29 and KM 12 tumor xenografts. Moreover, CRISPR/Cas9 was applied to establish an NF-κB p65 gene knockout HT-29 cell line model to validate the target of ITH-6. Overall, the results suggest that ITH-6 could be a potential anticancer drug candidate for p53 mutant colorectal cancers.

7.
Acta Pharm Sin B ; 12(5): 2609-2618, 2022 May.
Article in English | MEDLINE | ID: mdl-35646541

ABSTRACT

Overexpression of ABCG2 transporter in cancer cells has been linked to the development of multidrug resistance (MDR), an obstacle to cancer therapy. Our recent study uncovered that the MET inhibitor, tepotinib, is a potent reversal agent for ABCB1-mediated MDR. In the present study, we reported for the first time that the MET inhibitor tepotinib can also reverse ABCG2-mediated MDR in vitro and in vivo by directly binding to the drug-binding site of ABCG2 and reversibly inhibiting ABCG2 drug efflux activity, therefore enhancing the cytotoxicity of substrate drugs in drug-resistant cancer cells. Furthermore, the ABCB1/ABCG2 double-transfected cell model and ABCG2 gene knockout cell model demonstrated that tepotinib specifically inhibits the two MDR transporters. In mice bearing drug-resistant tumors, tepotinib increased the intratumoral accumulation of ABCG2 substrate drug topotecan and enhanced its antitumor effect. Therefore, our study provides a new potential of repositioning tepotinib as an ABCG2 inhibitor and combining tepotinib with substrate drugs to antagonize ABCG2-mediated MDR.

8.
Front Oncol ; 12: 855570, 2022.
Article in English | MEDLINE | ID: mdl-35494054

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy characterized by reduced differentiation of myeloid cells and uncontrolled cell proliferation. AML is prone to drug resistance and has a high recurrence rate during treatment with cytarabine-based chemotherapy. Our study aims to explore the cell differentiation effect of a potent histone deacetylase inhibitor (HDACi), I13, and its possible mechanism on AML cell lines (Kasumi-1, KG-1, MOLM-13 and NB4). It has been shown that I13 can significantly inhibit proliferation and colony formation of these AML cells by inducing cell differentiation coupled with cell-cycle exit at G0/G1. Mechanically, I13 presented the property of HDAC inhibition, as assessed by the acetylation of histone H3, which led to the differentiation of Kasumi-1 cells. In addition, the HDAC inhibition of I13 likely dictated the activation of the antigen processing and presentation pathway, which maybe has the potential to promote immune cells to recognize leukemic cells and respond directly against leukemic cells. These results indicated that I13 could induce differentiation of M3 and M5 subtypes of AML cells, M2 subtype AML cells with t(8;21) translocation and leukemic stem-like cells. Therefore, I13 could be an alternative compound which is able to overcome differentiation blocks in AML.

9.
Biomed Pharmacother ; 151: 113108, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35594707

ABSTRACT

It was known that diabetes may affect the male reproductive function by inhibiting the secretion of male accessory glands including seminal vesicles. Increased cell apoptosis induced by oxidative stress is thought to be an important pathological change in the seminal vesicles in diabetic patients. Quercetin is a potent anti-oxidative bioflavonoid. In this study, we explore the effect of quercetin on cell apoptosis of seminal vesicles and its underlying mechanism. The STZ-induced type 1 diabetic rat model was established. Three doses (low, medium and high) of quercetin were administrated to the STZ-induced type 1 diabetic rats for 4 months. Fasting blood glucose, the fructose in seminal plasma, total antioxidant capacity (T-AOC) and malondialdehyde (MDA) in seminal vesicles were determined by colorimetric method. Nuclear transcription factor- Nrf2 was observed by immunofluorescent staining. Biomarkers related to cell apoptosis, such as Bcl-2, Bax and cleaved -Caspase3 were measured by Western blotting and immumohistochemical staining. The body weight and seminal vesicle weight indexes were also determined. The results showed that T-AOC and Nrf2 were decreased, the levels of MDA were increased, the cleaved Caspase-3 was increased and the ratio of Bax to BCL-2 was decreased in seminal vesicles of diabetic rats, along with the severe hyperglycemia. When diabetic rats were treated by quercetin for 4 months, all the indexes were reversed at different degree except the fasting blood glucose. Our results suggested that quercetin could ameliorate oxidative stress­induced cell apoptosis of seminal vesicles via inhibiting Nrf2 in type 1 diabetic rats, which indicated that quercetin could be used for preventing lesions of seminal vesicles in type 1 diabetes.


Subject(s)
Apoptosis , Diabetes Mellitus, Experimental , NF-E2-Related Factor 2 , Quercetin , Seminal Vesicles , Animals , Male , Rats , Antioxidants/metabolism , bcl-2-Associated X Protein/metabolism , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Quercetin/pharmacology , Quercetin/therapeutic use , Rats, Sprague-Dawley , Seminal Vesicles/drug effects , Seminal Vesicles/metabolism
10.
Signal Transduct Target Ther ; 7(1): 135, 2022 04 23.
Article in English | MEDLINE | ID: mdl-35461318

ABSTRACT

The role of microbiota in health and diseases is being highlighted by numerous studies since its discovery. Depending on the localized regions, microbiota can be classified into gut, oral, respiratory, and skin microbiota. The microbial communities are in symbiosis with the host, contributing to homeostasis and regulating immune function. However, microbiota dysbiosis can lead to dysregulation of bodily functions and diseases including cardiovascular diseases (CVDs), cancers, respiratory diseases, etc. In this review, we discuss the current knowledge of how microbiota links to host health or pathogenesis. We first summarize the research of microbiota in healthy conditions, including the gut-brain axis, colonization resistance and immune modulation. Then, we highlight the pathogenesis of microbiota dysbiosis in disease development and progression, primarily associated with dysregulation of community composition, modulation of host immune response, and induction of chronic inflammation. Finally, we introduce the clinical approaches that utilize microbiota for disease treatment, such as microbiota modulation and fecal microbial transplantation.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Dysbiosis/therapy , Homeostasis , Humans , Immunity , Inflammation
11.
Front Oncol ; 12: 867655, 2022.
Article in English | MEDLINE | ID: mdl-35425710

ABSTRACT

Cancer is a prominent cause of mortality globally, and it becomes fatal and incurable if it is delayed in diagnosis. Chemotherapy is a type of treatment that is used to eliminate, diminish, or restrict tumor progression. Chemotherapeutic medicines are available in various formulations. Some tumors require just one type of chemotherapy medication, while others may require a combination of surgery and/or radiotherapy. Treatments might last from a few minutes to many hours to several days. Each medication has potential adverse effects associated with it. Researchers have recently become interested in the use of natural bioactive compounds in anticancer therapy. Some phytochemicals have effects on cellular processes and signaling pathways with potential antitumor properties. Beneficial anticancer effects of phytochemicals were observed in both in vivo and in vitro investigations. Encapsulating natural bioactive compounds in different drug delivery methods may improve their anticancer efficacy. Greater in vivo stability and bioavailability, as well as a reduction in undesirable effects and an enhancement in target-specific activity, will increase the effectiveness of bioactive compounds. This review work focuses on a novel drug delivery system that entraps natural bioactive substances. It also provides an idea of the bioavailability of phytochemicals, challenges and limitations of standard cancer therapy. It also encompasses recent patents on nanoparticle formulations containing a natural anti-cancer molecule.

12.
Front Pharmacol ; 13: 861642, 2022.
Article in English | MEDLINE | ID: mdl-35350768

ABSTRACT

Palbociclib was approved by the United States Food and Drug Administration for use, in combination with letrozole, as a first-line treatment for estrogen receptor-positive/human epidermal growth factor receptor 2-negative (ER+/HER2-) postmenopausal metastatic breast cancer. However, recent studies show that palbociclib may be an inhibitor of the ABCB1 transporter, although this remains to be elucidated. Therefore, we conducted experiments to determine the interaction of palbociclib with the ABCB1 transporter. Our in vitro results indicated that the efficacy of palbociclib was significantly decreased in the ABCB1-overexpressing cell lines. Furthermore, the resistance of ABCB1-overexpressing cells to palbociclib was reversed by 3 µM of the ABCB1 inhibitor, verapamil. Moreover, the incubation of ABCB1-overexpressing KB-C2 and SW620/Ad300 cells with up to 5 µM of palbociclib for 72 h, significantly upregulated the protein expression of ABCB1. The incubation with 3 µM of palbociclib for 2h significantly increased the intracellular accumulation of [3H]-paclitaxel, a substrate of ABCB1, in ABCB1 overexpressing KB-C2 cells but not in the corresponding non-resistant parental KB-3-1 cell line. However, the incubation of KB-C2 cells with 3 µM of palbociclib for 72 h decreased the intracellular accumulation of [3H]-paclitaxel due to an increase in the expression of the ABCB1 protein. Palbociclib produced a concentration-dependent increase in the basal ATPase activity of the ABCB1 transporter (EC50 = 4.73 µM). Molecular docking data indicated that palbociclib had a high binding affinity for the ABCB1 transporter at the substrate binding site, suggesting that palbociclib may compete with other ABCB1 substrates for the substrate binding site of the ABCB1. Overall, our results indicate that palbociclib is a substrate for the ABCB1 transporter and that its in vitro anticancer efficacy is significantly decreased in cancer cells overexpressing the ABCB1.

13.
Mol Cancer ; 21(1): 77, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35303882

ABSTRACT

BACKGROUND: The use of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) brings remarkable benefits for the survival of patients with advanced NSCLC harboring EGFR mutations. Unfortunately, acquired resistance seems to be inevitable and limits the application of EGFR-TKIs in clinical practice. This study reported a common molecular mechanism sustaining resistance and potential treatment options to overcome EGFR-TKIs resistance. METHODS: EGFR-TKIs resistant NSCLC cells were established and confirmed by MTT assay. Cholesterol content was detected and the promotional function of cholesterol on NSCLC growth was determined in vivo. Then, we identified ERRα expression as the downstream factor of cholesterol-mediated drug resistance. To dissect the regulatory mechanism, we conducted experiments, including immunofluorescence, co-immunoprecipitation, luciferase reporter assay and chromatin immunoprecipitation assay. RESULTS: Long-term exposure to EGFR-TKIs generate drug resistance with the characteristic of cholesterol accumulation in lipid rafts, which promotes EGFR and Src to interact and lead EGFR/Src/Erk signaling reactivation-mediated SP1 nuclear translocation and ERRα re-expression. Further investigation identifies ERRα as a target gene of SP1. Functionally, re-expression of ERRα sustains cell proliferation by regulating ROS detoxification process. Lovastatin, a drug used to decrease cholesterol level, and XCT790, an inverse agonist of ERRα, overcome gefitinib and osimertinib resistance both in vitro and in vivo. CONCLUSIONS: Our study indicates that cholesterol/EGFR/Src/Erk/SP1 axis-induced ERRα re-expression promotes survival of gefitinib and osimertinib-resistant cancer cells. Besides, we demonstrate the potential of lowing cholesterol and downregulation of ERRα as effective adjuvant treatment of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cholesterol/pharmacology , Cholesterol/therapeutic use , Drug Resistance, Neoplasm , ErbB Receptors/genetics , Gefitinib/pharmacology , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptors, Estrogen , Sp1 Transcription Factor/genetics , ERRalpha Estrogen-Related Receptor
15.
Mol Cancer ; 21(1): 37, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35130920

ABSTRACT

PURPOSE: The overall response of cisplatin-based chemotherapy in bladder urothelial carcinoma (BUC) remains unsatisfactory due to the complex pathological subtypes, genomic difference, and drug resistance. The genes that associated with cisplatin resistance remain unclear. Herein, we aimed to identify the cisplatin resistance associated genes in BUC. EXPERIMENTAL DESIGN: The cytotoxicity of cisplatin was evaluated in six bladder cancer cell lines to compare their responses to cisplatin. The T24 cancer cells exhibited the lowest sensitivity to cisplatin and was therefore selected to explore the mechanisms of drug resistance. We performed genome-wide CRISPR screening in T24 cancer cells in vitro, and identified that the gene heterogeneous nuclear ribonucleoprotein U (HNRNPU) was the top candidate gene related to cisplatin resistance. Epigenetic and transcriptional profiles of HNRNPU-depleted cells after cisplatin treatment were analyzed to investigate the relationship between HNRNPU and cisplatin resistance. In vivo experiments were also performed to demonstrate the function of HNRNPU depletion in cisplatin sensitivity. RESULTS: Significant correlation was found between HNRNPU expression level and sensitivity to cisplatin in bladder cancer cell lines. In the high HNRNPU expressing T24 cancer cells, knockout of HNRNPU inhibited cell proliferation, invasion, and migration. In addition, loss of HNRNPU promoted apoptosis and S-phase arrest in the T24 cells treated with cisplatin. Data from The Cancer Genome Atlas (TCGA) demonstrated that HNRNPU expression was significantly higher in tumor tissues than in normal tissues. High HNRNPU level was negatively correlated with patient survival. Transcriptomic profiling analysis showed that knockout of HNRNPU enhanced cisplatin sensitivity by regulating DNA damage repair genes. Furthermore, it was found that HNRNPU regulates chemosensitivity by affecting the expression of neurofibromin 1 (NF1). CONCLUSIONS: Our study demonstrated that HNRNPU expression is associated with cisplatin sensitivity in bladder urothelial carcinoma cells. Inhibition of HNRNPU could be a potential therapy for cisplatin-resistant bladder cancer.


Subject(s)
Antineoplastic Agents , Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Carcinoma, Transitional Cell/drug therapy , Cell Line, Tumor , Cell Proliferation , Cisplatin/pharmacology , Cisplatin/therapeutic use , Drug Resistance, Neoplasm/genetics , Heterogeneous-Nuclear Ribonucleoprotein U , Humans , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
16.
Front Oncol ; 11: 731260, 2021.
Article in English | MEDLINE | ID: mdl-34631561

ABSTRACT

Ovarian cancer is one of the leading female malignancies which accounts for the highest mortality rate among gynecologic cancers. Surgical cytoreduction followed by chemotherapy is the mainstay of treatment. However, patients with recurrent ovarian cancer are likely to exhibit resistance to chemotherapy due to reduced sensitivity to chemotherapeutic drugs. Adenosine triphosphate (ATP)-binding cassette (ABC) transporters have been extensively studied as multidrug resistance (MDR) mediators since they are responsible for the efflux of various anticancer drugs. Multidrug resistance protein 7 (MRP7, or ABCC10) was discovered in 2001 and revealed to transport chemotherapeutic drugs. Till now, only limited knowledge was obtained regarding its roles in ovarian cancer. In this study, we established an MRP7-overexpressing ovarian cancer cell line SKOV3/MRP7 via transfecting recombinant MRP7 plasmids. The SKOV3/MRP7 cell line was resistant to multiple anticancer drugs including paclitaxel, docetaxel, vincristine and vinorelbine with a maximum of 8-fold resistance. Biological function of MRP7 protein was further determined by efflux-accumulation assays. Additionally, MTT results showed that the drug resistance of the SKOV3/MRP7 cells was reversed by cepharanthine, a known inhibitor of MRP7. Moreover, we also found that the overexpression of MRP7 enhanced the migration and epithelial-mesenchymal transition (EMT) induction. In conclusion, we established an in vitro model of MDR in ovarian cancer and suggested MRP7 overexpression as the leading mechanism of chemoresistance in this cell line. Our results demonstrated the potential relationship between MRP7 and ovarian cancer MDR.

17.
Front Cell Dev Biol ; 9: 697927, 2021.
Article in English | MEDLINE | ID: mdl-34336849

ABSTRACT

Overexpression of ATP-binding cassette transporter superfamily G member 2 (ABCG2), is known as a major mechanism mediating multidrug resistance (MDR) in cancer cells. MLN7243 is a small-molecule ubiquitin activating enzyme inhibitor currently under clinical investigation. The aim of the current study is to determine if MLN7243 is a substrate of MDR-related ABCG2 transporter. Our results showed that cancer cells overexpressing ABCG2 transporter were resistant to MLN7243 compared to the parental cells, while knockout of ABCG2 gene or pharmacological inhibition of ABCG2 efflux function completely reversed the drug resistance. Unexpectedly, the endogenous low expression of ABCG2 is sufficient to confer cancer cells resistance to MLN7243. The ABCG2 ATPase assay and HPLC assay suggested that MLN7243 can significantly stimulate ABCG2 ATPase activity and be pumped out from ABCG2-overexpressing cells by ABCG2. The docking analysis also implied that MLN7243 binds to ABCG2 drug-binding pocket with optimal binding affinity. However, MLN7243 did not competitively inhibit the efflux of other ABCG2 substrate drugs, indicating it may not serve as an MDR reversal agent. In conclusion, our study provides direct in vitro evidence to show that MLN7243 is a potent ABCG2 substrate. If our results can be translated to humans, it suggests that combining MLN7243 with ABCG2 inhibitors may enhance the anticancer efficacy for patients with high tumor ABCG2 level.

18.
J Evid Based Med ; 14(3): 232-256, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34388310

ABSTRACT

The ATP-binding cassette (ABC) transporter superfamily is one of the largest membrane protein families existing in wide spectrum of organisms from prokaryotes to human. ABC transporters are also known as efflux pumps because they mediate the cross-membrane transportation of various endo- and xenobiotic molecules energized by ATP hydrolysis. Therefore, ABC transporters have been considered closely to multidrug resistance (MDR) in cancer, where the efflux of structurally distinct chemotherapeutic drugs causes reduced itherapeutic efficacy. Besides, ABC transporters also play other critical biological roles in cancer such as signal transduction. During the past decades, extensive efforts have been made in understanding the structure-function relationship, transportation profile of ABC transporters, as well as the possibility to overcome MDR via targeting these transporters. In this review, we discuss the most recent knowledge regarding ABC transporters and cancer drug resistance in order to provide insights for the development of more effective therapies.


Subject(s)
Antineoplastic Agents , Neoplasms , ATP-Binding Cassette Transporters/pharmacology , ATP-Binding Cassette Transporters/therapeutic use , Adenosine Triphosphate/pharmacology , Adenosine Triphosphate/therapeutic use , Antineoplastic Agents/therapeutic use , Drug Resistance, Multiple , Humans , Neoplasms/drug therapy
19.
Int J Biol Sci ; 17(10): 2652-2665, 2021.
Article in English | MEDLINE | ID: mdl-34326700

ABSTRACT

Tyrosine kinase inhibitors (TKIs) are important in managing lymphoid malignancies by targeting B-cell receptor signaling pathways. Entospletinib (GS-9973) is an oral, selective inhibitor of spleen tyrosine kinase (Syk), currently in the phase II clinical trials for the treatment of chronic lymphocytic leukemia. Syk is abundantly present in the cells of hematopoietic lineage that mediates cell proliferation, differentiation, and adhesion. In this current study, we evaluated the efficacy of GS-9973 to overcome multidrug resistance (MDR) due to the overexpression of the ABCG2 transporter in the non-small cell lung cancer (NSCLC) cell line, NCI-H460/MX20. In vitro, 3 µM of GS-9973 reversed the drug resistance of NCI-H460/MX20 cell line to mitoxantrone or doxorubicin. GS-9973, at 3 µM reverses ABCG2-mediated MDR by blocking ABCG2 efflux activity and downregulating ABCG2 expression at the protein level but did not alter the ABCG2 mRNA expression and subcellular localization of the ABCG2 protein compared to drug-resistant cells incubated with the vehicle. GS-9973 produced a moderate concentration-dependent increase in the ATPase activity of ABCG2 (EC50 = 0.42 µM) and molecular docking data indicated that GS-9973 had a high affinity (-10.226 kcal/mol) for the substrate-binding site of ABCG2. Finally, HPLC analysis proved that the intracellular concentration of GS-9973 is not significantly different in both parental and resistant cell lines. In conclusion, our study suggests that in vitro, GS-9973 in combination with certain anticancer drugs, represent a strategy to overcome ABCG2-mediated MDR cancers.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Resistance, Neoplasm/drug effects , Indazoles/pharmacology , Lung Neoplasms/drug therapy , Neoplasm Proteins/antagonists & inhibitors , Pyrazines/pharmacology , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Doxorubicin/pharmacology , Drug Resistance, Multiple/drug effects , Humans , Lung Neoplasms/metabolism , Mitoxantrone/pharmacology , Molecular Docking Simulation , Syk Kinase/antagonists & inhibitors
20.
Drug Resist Updat ; 57: 100770, 2021 07.
Article in English | MEDLINE | ID: mdl-34175687

ABSTRACT

The cytotoxic anti-cancer drugs cisplatin, paclitaxel, doxorubicin, 5-fluorouracil (5-FU), as well as targeted drugs including imatinib, erlotinib, and nivolumab, play key roles in clinical cancer treatment. However, the frequent emergence of drug resistance severely comprosises their anti-cancer efficacy. A number of studies indicated that loss of function of tumor suppressor genes (TSGs) is involved in the development of cancer drug resistance, apart from decreased drug influx, increased drug efflux, induction of anti-apoptosis mechanisms, alterations in tumor microenvironment, drug compartmentalization, enhanced DNA repair and drug inactivation. TSGs are involved in the pathogenesis of tumor formation through regulation of DNA damage repair, cell apoptosis, autophagy, proliferation, cell cycle progression, and signal transduction. Our increased understanding of TSGs in the past decades demonstrates that gene mutation is not the only reason that leads to the inactivation of TSGs. Loss of function of TSGs may be based on the ubiquitin-proteasome pathway, epigenetic and transcriptional regualtion, post-translation modifications like phosphorylation as well as cellular translocation of TSGs. As the above processes can constitute"druggable targets", these mechanisms provide novel therapeutic approaches in targeting TSGs. Some small molecule compounds targeting these approaches re-activated TSGs and reversed cancer drug resistance. Along this vein, functional restoration of TSGs is a novel and promising approach to surmount cancer drug resistance. In the current review, we draw a scenario based on the role of loss of function of TSGs in drug resistance, on mechanisms leading to inactivation of TSGs and on pharmacological agents acting on these mechanisms to overcome cancer drug resistance. This review discusses novel therapeutic strategies targeting TSGs and offers possible modalities to conquer cancer drug resistance.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/physiology , Genes, Tumor Suppressor/drug effects , Genes, Tumor Suppressor/physiology , Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Apoptosis/physiology , DNA Repair/physiology , Humans , Signal Transduction , Tumor Microenvironment/drug effects , Tumor Microenvironment/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...