Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(11): e32027, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38868037

ABSTRACT

Objective: Understanding the characteristics of alveolar bone resorption in an East Asian population after maxillary incisor extraction and providing a reference for implant treatment plans. Study design: Cone-beam computerized tomography (CBCT) data of 125 East Asian patients with unilateral extraction of maxillary incisors for 3 months were collected. The alveolar bone width and height in the extraction sites were measured and compared with the corresponding contralateral sites. Results: The differences in alveolar bone width between the extraction site and contralateral site were as follows: 4.11 mm, 2.68 mm, and 2.09 mm (3 mm, 5 mm, 7 mm apical from CEJ of the contralateral tooth). Data are expressed as the median. The horizontal resorption ratio of alveolar bone was 49.94 %, 31.5 %, and 24.46 %. The difference in alveolar bone height was 0.78 mm. The vertical resorption ratio was 7.78 %. The resorption did not differ significantly between sexes and was not significantly affected by tooth positions. Conclusions: In the studied East Asian population, significant horizontal and vertical alveolar bone resorption occurs after natural healing of maxillary incisor extraction for 3 months. The closer to the alveolar ridge crest, the more significant the horizontal resorption, resulting in an "inverted triangle" shape residual alveolar bone.

2.
Article in English | MEDLINE | ID: mdl-38888910

ABSTRACT

Donor (D)-acceptor (A) copolymer-based organic mixed ionic-electronic conductors (OMIECs) exhibit intrinsic environmental stability for they have tailored energy levels. However, their figure-of-merit (µC*) is still falling behind the D-D polymers because of morphology deterioration during the electrochemical doping process. Herein, we developed two D-A copolymers with precisely regulated backbone curvature, namely PTBT-P and PTTBT-P. Compared to the curved PTBT-P and previously reported copolymers, PTTBT-P better keeps its backbone linear, leading to a long-range ordered doping morphology, which is revealed by the in operando X-ray technique. This optimized doping morphology enables a significantly improved operando charge mobility (µ) of 2.44 cm2 V-1 s-1 and a µC* value of 342 F cm-1 V-1 s-1, one of the highest values in D-A copolymer based on OECTs. Besides, we fabricated PTTBT-P-based electrochemical random-access memories and achieved ideal and robust conductance modulation. This study highlights the critical role of backbone curvature control in the optimization of doping morphology for efficient and robust organic electrochemical devices.

3.
Nature ; 630(8015): 96-101, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750361

ABSTRACT

Chemical doping is an important approach to manipulating charge-carrier concentration and transport in organic semiconductors (OSCs)1-3 and ultimately enhances device performance4-7. However, conventional doping strategies often rely on the use of highly reactive (strong) dopants8-10, which are consumed during the doping process. Achieving efficient doping with weak and/or widely accessible dopants under mild conditions remains a considerable challenge. Here, we report a previously undescribed concept for the photocatalytic doping of OSCs that uses air as a weak oxidant (p-dopant) and operates at room temperature. This is a general approach that can be applied to various OSCs and photocatalysts, yielding electrical conductivities that exceed 3,000 S cm-1. We also demonstrate the successful photocatalytic reduction (n-doping) and simultaneous p-doping and n-doping of OSCs in which the organic salt used to maintain charge neutrality is the only chemical consumed. Our photocatalytic doping method offers great potential for advancing OSC doping and developing next-generation organic electronic devices.

4.
J Am Chem Soc ; 146(18): 12850-12856, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38648558

ABSTRACT

Acetylene production from mixed α-olefins emerges as a potentially green and energy-efficient approach with significant scientific value in the selective cleavage of C-C bonds. On the Pd(100) surface, it is experimentally revealed that C2 to C4 α-olefins undergo selective thermal cleavage to form surface acetylene and hydrogen. The high selectivity toward acetylene is attributed to the 4-fold hollow sites which are adept at severing the terminal double bonds in α-olefins to produce acetylene. A challenge arises, however, because acetylene tends to stay at the Pd(100) surface. By using the surface alloying methodology with alien Au, the surface Pd d-band center has been successfully shifted away from the Fermi level to release surface-generated acetylene from α-olefins as a gaseous product. Our study actually provides a technological strategy to economically produce acetylene and hydrogen from α-olefins.

5.
J Dent ; 144: 104924, 2024 05.
Article in English | MEDLINE | ID: mdl-38467177

ABSTRACT

OBJECTIVES: The purpose of this scoping review was to evaluate the performance of artificial intelligence (AI) in the prognosis of dental implants. DATA: Studies that analyzed the performance of AI models in the prediction of implant prognosis based on medical records or radiographic images. Quality assessment was conducted using the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Quasi-Experimental Studies. SOURCES: This scoping review included studies published in English up to October 2023 in MEDLINE/PubMed, Embase, Cochrane Library, and Scopus. A manual search was also performed. STUDY SELECTION: Of 892 studies, full-text analysis was conducted in 36 studies. Twelve studies met the inclusion criteria. Eight used deep learning models, 3 applied traditional machine learning algorithms, and 1 study combined both types. The performance was quantified using accuracy, sensitivity, specificity, precision, F1 score, and receiver operating characteristic area under curves (ROC AUC). The prognostic accuracy was analyzed and ranged from 70 % to 96.13 %. CONCLUSIONS: AI is a promising tool in evaluating implant prognosis, but further enhancements are required. Additional radiographic and clinical data are needed to improve AI performance in implant prognosis. CLINICAL SIGNIFICANCE: AI can predict the prognosis of dental implants based on radiographic images or medical records. As a result, clinicians can receive predicted implant prognosis with the assistance of AI before implant placement and make informed decisions.


Subject(s)
Artificial Intelligence , Dental Implants , Humans , Prognosis , Machine Learning , Deep Learning , ROC Curve
6.
Nanomicro Lett ; 16(1): 145, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441811

ABSTRACT

Aqueous Zn-ion batteries (AZIBs) have attracted increasing attention in next-generation energy storage systems due to their high safety and economic. Unfortunately, the side reactions, dendrites and hydrogen evolution effects at the zinc anode interface in aqueous electrolytes seriously hinder the application of aqueous zinc-ion batteries. Here, we report a critical solvation strategy to achieve reversible zinc electrochemistry by introducing a small polar molecule acetonitrile to form a "catcher" to arrest active molecules (bound water molecules). The stable solvation structure of [Zn(H2O)6]2+ is capable of maintaining and completely inhibiting free water molecules. When [Zn(H2O)6]2+ is partially desolvated in the Helmholtz outer layer, the separated active molecules will be arrested by the "catcher" formed by the strong hydrogen bond N-H bond, ensuring the stable desolvation of Zn2+. The Zn||Zn symmetric battery can stably cycle for 2250 h at 1 mAh cm-2, Zn||V6O13 full battery achieved a capacity retention rate of 99.2% after 10,000 cycles at 10 A g-1. This paper proposes a novel critical solvation strategy that paves the route for the construction of high-performance AZIBs.

7.
Front Bioeng Biotechnol ; 12: 1356412, 2024.
Article in English | MEDLINE | ID: mdl-38371421

ABSTRACT

Objective: The objective of this study is to assess the impact of low-intensity pulsed ultrasound (LIPUS) therapy on the peri-implant osteogenesis in a Type II diabetes mellitus (T2DM) rat model. Methods: A total of twenty male Sprague-Dawley (SD) rats were randomly allocated into four groups: Control group, T2DM group, Control-LIPUS group, and T2DM-LIPUS group. Implants were placed at the rats' bilateral maxillary first molar sites. The LIPUS treatment was carried out on the rats in Control-LIPUS group and T2DM-LIPUS group, immediately after the placement of the implants, over three consecutive weeks. Three weeks after implantation, the rats' maxillae were extracted for micro-CT, removal torque value (RTV), and histologic analysis. Results: Micro-CT analysis showed that T2DM rats experienced more bone loss around implant cervical margins compared with the non-T2DM rats, while the LIPUS treated T2DM rats showed similar bone heights to the non-T2DM rats. Bone-implant contact ratio (BIC) were lower in T2DM rats but significantly improved in the LIPUS treated T2DM rats. Bone formation parameters including bone volume fraction (BV/TV), trabecular thickness (Tb.Th), bone mineral density (BMD) and RTV were all positively influenced by LIPUS treatment. Histological staining further confirmed LIPUS's positive effects on peri-implant new bone formation in T2DM rats. Conclusion: As an effective and safe treatment in promoting osteogenesis, LIPUS has a great potential for T2DM patients to attain improved peri-implant osteogenesis. To confirm its clinical efficacy and to explore the underlying mechanism, further prospective cohort studies or randomized controlled trials are needed in the future.

8.
Angew Chem Int Ed Engl ; 63(11): e202319658, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38265195

ABSTRACT

Developing low-cost and high-performance n-type polymer semiconductors is essential to accelerate the application of organic thermoelectrics (OTEs). To achieve this objective, it is critical to design strong electron-deficient building blocks with simple structure and easy synthesis, which are essential for the development of n-type polymer semiconductors. Herein, we synthesized two cyano-functionalized highly electron-deficient building blocks, namely 3,6-dibromopyrazine-2-carbonitrile (CNPz) and 3,6-Dibromopyrazine-2,5-dicarbonitrile (DCNPz), which feature simple structures and facile synthesis. CNPz and DCNPz can be obtained via only one-step reaction and three-step reactions from cheap raw materials, respectively. Based on CNPz and DCNPz, two acceptor-acceptor (A-A) polymers, P(DPP-CNPz) and P(DPP-DCNPz) are successfully developed, featuring deep-positioned lowest unoccupied molecular orbital (LUMO) energy levels, which are beneficial to n-type organic thin-film transistors (OTFTs) and OTEs performance. An optimal unipolar electron mobility of 0.85 and 1.85 cm2 V-1 s-1 is obtained for P(DPP-CNPz) and P(DPP-DCNPz), respectively. When doped with N-DMBI, P(DPP-CNPz) and P(DPP-DCNPz) show high n-type electrical conductivities/power factors of 25.3 S cm-1 /41.4 µW m-1 K-2 , and 33.9 S cm-1 /30.4 µW m-1 K-2 , respectively. Hence, the cyano-functionalized pyrazine CNPz and DCNPz represent a new class of structurally simple, low-cost and readily accessible electron-deficient building block for constructing n-type polymer semiconductors.

9.
Biosensors (Basel) ; 13(9)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37754109

ABSTRACT

DNA ligases are essential enzymes involved in DNA replication and repair processes in all organisms. These enzymes seal DNA breaks by catalyzing the formation of phosphodiester bonds between juxtaposed 5' phosphate and 3' hydroxyl termini in double-stranded DNA. In addition to their critical roles in maintaining genomic integrity, DNA ligases have been recently identified as diagnostic biomarkers for several types of cancers and recognized as potential drug targets for the treatment of various diseases. Although DNA ligases are significant in basic research and medical applications, developing strategies for efficiently detecting and precisely quantifying these crucial enzymes is still challenging. Here, we report our design and fabrication of a highly sensitive and specific biosensor in which a stable DNA hairpin is utilized to stimulate the generation of fluorescence signals. This probe is verified to be stable under a wide range of experimental conditions and exhibits promising performance in detecting DNA ligases. We anticipate that this hairpin-based biosensor will significantly benefit the development of new targeting strategies and diagnostic tools for certain diseases.

10.
Mater Horiz ; 10(10): 4213-4223, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37477499

ABSTRACT

Organic electrochemical transistors (OECTs) are a rapidly advancing technology that plays a crucial role in the development of next-generation bioelectronic devices. Recent advances in p-type/n-type organic mixed ionic-electronic conductors (OMIECs) have enabled power-efficient complementary OECT technologies for various applications, such as chemical/biological sensing, large-scale logic gates, and neuromorphic computing. However, ensuring long-term operational stability remains a significant challenge that hinders their widespread adoption. While p-type OMIECs are generally more stable than n-type OMIECs, they still face limitations, especially during prolonged operations. Here, we demonstrate that simple methylation of the pyrrole-benzothiazine-based (PBBT) ladder polymer backbone results in stable and high-performance p-type OECTs. The methylated PBBT (PBBT-Me) exhibits a 25-fold increase in OECT mobility and an impressive 36-fold increase in µC* (mobility × volumetric capacitance) compared to the non-methylated PBBT-H polymer. Combining the newly developed PBBT-Me with the ladder n-type poly(benzimidazobenzophenanthroline) (BBL), we developed complementary inverters with a record-high DC gain of 194 V V-1 and excellent stability. These state-of-the-art complementary inverters were used to demonstrate leaky integrate-and-fire type organic electrochemical neurons (LIF-OECNs) capable of biologically relevant firing frequencies of about 2 Hz and of operating continuously for up to 6.5 h. This achievement represents a significant improvement over previous results and holds great potential for developing stable bioelectronic circuits capable of in-sensor computing.

11.
Macromol Rapid Commun ; 44(23): e2300213, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37230735

ABSTRACT

The dielectronic constant of organic semiconductor materials is directly related to its molecule dipole moment, which can be used to guide the design of high-performance organic photovoltaic materials. Herein, two isomeric small molecule acceptors, ANDT-2F and CNDT-2F, are designed and synthesized by using the electron localization effect of alkoxy in different positions of naphthalene. It is found that the axisymmetric ANDT-2F exhibits a larger dipole moment, which can improve exciton dissociation and charge generation efficiencies due to the strong intramolecular charge transfer effect, resulting in the higher photovoltaic performance of devices. Moreover, PBDB-T:ANDT-2F blend film exhibits larger and more balanced hole and electron mobility as well as nanoscale phase separation due to the favorable miscibility. As a result, the optimized device based on axisymmetric ANDT-2F shows a JSC of 21.30 mA cm-2 , an FF of 66.21%, and a power conversion energy of 12.13%, higher than that of centrosymmetric CNDT-2F-based device. This work provides important implications for designing and synthesizing efficient organic photovoltaic materials by tuning their dipole moment.


Subject(s)
Electrons , Semiconductors , Isomerism
12.
Small ; 19(5): e2204905, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36446633

ABSTRACT

To separately explore the importance of hydrophilicity and backbone planarity of polymer photocatalyst, a series of benzothiadiazole-based donor-acceptor alternating copolymers incorporating alkoxy, linear oligo(ethylene glycol) (OEG) side chain, and backbone fluorine substituents is presented. The OEG side chains in the polymer backbone increase the surface energy of the polymer nanoparticles, thereby improving the interaction with water and facilitating electron transfer to water. Moreover, the OEG-attached copolymers exhibit enhanced intermolecular packing compared to polymers with alkoxy side chains, which is possibly attributed to the self-assembly properties of the side chains. Fluorine substituents on the polymer backbone produce highly ordered lamellar stacks with distinct π-π stacking features; subsequently, the long-lived polarons toward hydrogen evolution are observed by transient absorption spectroscopy. In addition, a new nanoparticle synthesis strategy using a methanol/water mixed solvent is first adopted, thereby avoiding the screening effect of surfactants between the nanoparticles and water. Finally, hydrogen evolution rate of 26 000 µmol g-1  h-1 is obtained for the copolymer incorporated with both OEG side chains and fluorine substituents under visible-light irradiation (λ > 420 nm). This study demonstrates how the glycol side chain strategy can be further optimized for polymer photocatalysts by controlling the backbone planarity.

13.
ACS Appl Mater Interfaces ; 15(1): 1639-1651, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36571844

ABSTRACT

The development of n-type organic semiconductors critically relies on the design and synthesis of highly electron-deficient building blocks with good solubility and small steric hindrance. We report here a strongly electron-deficient dithienylpyrazinediimide (TPDI) and its n-type semiconducting polymers. The pyrazine substitution leads to the resulting polymers with much lower-lying lowest unoccupied molecular orbital (LUMO) levels and improved backbone planarity compared to the reported dithienylbenzodiimide (TBDI)- and fluorinated dithienylbenzodiimide (TFBDI)-based polymer analogues, thus yielding n-type transport character with an electron mobility up to 0.44 cm2 V-1 s-1 in organic thin-film transistors. These results demonstrate that dithienylpyrazinediimide is a highly promising electron-deficient building block for constructing high-performance n-type polymers and the incorporation of pyrazine into imide-functionalized (hetero)arenes is an effective strategy to develop n-type polymers with deep-lying frontier molecular orbital (FMO) levels for organic optoelectronic devices.

14.
Angew Chem Int Ed Engl ; 61(51): e202214192, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36282628

ABSTRACT

n-Type semiconducting polymers with high thermoelectric performance remain challenging due to the scarcity of molecular design strategy, limiting their applications in organic thermoelectric (OTE) devices. Herein, we provide a new approach to enhance the OTE performance of n-doped polymers by introducing acceptor-acceptor (A-A) type backbone bearing branched ethylene glycol (EG) side chains. When doped with 4-(2,3-dihydro-1,3-dimethyl-1H-benzimidazol-2-yl)-N,N-dimethylbenzenamine (N-DMBI), the A-A homopolymer PDTzTI-TEG exhibits n-type electrical conductivity (σ) up to 34 S cm-1 and power factor value of 15.7 µW m-1 K-2 . The OTE performance of PDTzTI-TEG is far greater than that of homopolymer PBTI-TEG (σ=0.27 S cm-1 ), indicating that introducing electron-deficient thiazole units in the backbone further improves the n-doping efficiency. These results demonstrate that developing A-A type polymers with EG side chains is an effective strategy to enhance n-type OTE performance.

15.
Angew Chem Int Ed Engl ; 61(36): e202205111, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-35692125

ABSTRACT

Ruddlesden-Popper phase 2D perovskite solar cells (PSCs) exhibit improved lifetime while still facing challenges such as phase alignment and up-scaling to module-level devices. Herein, polyelectrolytes are explored to tackle this issue. The contact between perovskite and hole-transport layer (HTL) is important for decreasing interfacial non-radiative recombination and scalable fabrication of uniform 2D perovskite films. Through exploring compatible butylamine cations, we first demonstrate poly(3-(4-carboxybutyl)thiophene-2,5-diyl)-butylamine (P3CT-BA) as an efficient HTL for 2D PSCs due to its great hydrophilicity, relatively high hole mobility and uniform surface. More importantly, the tailored P3CT-BA has an anchoring effect and acts as the buried passivator for 2D perovskites. Consequently, a best efficiency approaching 18 % was achieved and we further first report large-area (2×3 cm2 , 5×5 cm2 ) 2D perovskite minimodules with an impressive efficiency of 14.81 % and 11.13 %, respectively.

16.
Adv Mater ; 34(33): e2202608, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35748129

ABSTRACT

A major challenge hindering the further development of all-polymer solar cells (all-PSCs) employing polymerized small-molecule acceptors is the relatively low fill factor (FF) due to the difficulty in controlling the active-layer morphology. The issues typically arise from oversized phase separation resulting from the thermodynamically unfavorable mixing between two macromolecular species, and disordered molecular orientation/packing of highly anisotropic polymer chains. Herein, a facile top-down controlling strategy to engineer the morphology of all-polymer blends is developed by leveraging the layer-by-layer (LBL) deposition. Optimal intermixing of polymer components can be achieved in the two-step process by tuning the bottom-layer polymer swelling during top-layer deposition. Consequently, both the molecular orientation/packing of the bottom layer and the molecular ordering of the top layer can be optimized with a suitable top-layer processing solvent. A favorable morphology with gradient vertical composition distribution for efficient charge transport and extraction is therefore realized, affording a high all-PSC efficiency of 17.0% with a FF of 76.1%. The derived devices also possess excellent long-term thermal stability and can retain >90% of their initial efficiencies after being annealed at 65 °C for 1300 h. These results validate the distinct advantages of employing an LBL processing protocol to fabricate high-performance all-PSCs.

17.
Angew Chem Int Ed Engl ; 61(33): e202205168, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35736791

ABSTRACT

Intramolecular Cl-S non-covalent interaction is introduced to modify molecular backbone of a benzodithiophene terthiophene rhodamine (BTR) benchmark structure, helping planarize and rigidify the molecular framework for improving charge transport. Theoretical simulations and temperature-variable NMR experiments clearly validate the existence of Cl-S non-covalent interaction in two designed chlorinated donors and explain its important role in enhancing planarity and rigidity of the molecules for enhancing their crystallinity. The asymmetric isomerization of side-chains further optimizes the molecular orientation and surface energy to strike a balance between its crystallinity and miscibility. This carefully manipulated molecular design helps result in increased carrier mobility and suppressed charge recombination to obtain simultaneously enhanced short-circuit current (Jsc ) and fill factor (FF) and a very high efficiency of 15.73 % in binary all-small-molecule organic solar cells.

18.
J Am Chem Soc ; 144(21): 9500-9509, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35594143

ABSTRACT

The dominated hole transport material (HTM) used in state-of-the-art perovskite solar cells (PSCs) is Spiro-OMeTAD, which needs to be doped to improve its conductivity and mobility. The inevitable instability induced by deliquescent dopants and the necessary oxidation process in air hinders the commercialization of this technology. Here, an alloy strategy using two conjugated polymers with highly similar structures but different crystallinities for dopant-free HTM and high-performance PSCs has been demonstrated. We found that the polymeric packing and crystallinity of a polymer alloy could be regulated finely by blending the polymer PM6 and our developed polymer PMSe, which exhibits a shorter π-π stacking distance due to the improved planarity of the polymer backbone with strong C═O···Se noncovalent interactions. The structure-property relationship of the polymer alloy is investigated by theoretical and experimental analyses. The optimized PSCs using the polymer alloy HTM without any ionic dopants feature an excellent power conversion efficiency of 24.53% and a high open circuit voltage (VOC) of 1.19 V with much improved stability. This efficiency is much higher than that of the control device using doped Spiro-OMeTAD HTM (PCE = 22.54%). Our work provides a very effective strategy to design and construct dopant-free hole transport materials for highly efficient perovskite solar cells and other applications.

20.
Macromol Rapid Commun ; 43(16): e2200062, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35318766

ABSTRACT

Recently, the strategy of polymerized small-molecule acceptors (PSMAs) has attracted extensive attention for applications in all-polymer solar cells (all-PSCs). Although side-chain engineering is considered as a simple and effective strategy for manipulating polymer properties, the corresponding effect on photovoltaic performance of PSMAs in all-PSCs has not been systemically investigated. Herein, a series of PSMAs based on the benzotriazole (BTz)-core fused SMAs with different N-alkyl chains including branched 2-butyloctyl, linear n-octyl, and methyl on the BTz unit, namely PZT-C12, PZT-C8, and PZT-C1, respectively, is presented. Comparative studies show that the size of alkyl chains has a significant impact on the solid-state behavior of PZT polymers, which in turn affects their light absorption and charge transporting capacities, and subsequently the all-PSC performances. When combining with the polymer donor PBDB-T, PZT-C1 affords a champion power conversion efficiency of 14.9%, compared to 13.1% of PZT-C12, and 13.8% of PZT-C8 in the resultant all-PSCs, mainly benefiting from its better crystallinity and the more favorable blend morphology. This work emphasizes the importance of optimizing side-chain substituents on PSMAs for improving the device efficiency of all-PSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...