Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 135: 112285, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38762922

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic and recurrent gastrointestinal inflammation regulated by intricate mechanisms. Recently, prebiotics is considered as promising nutritional strategy for the prevention and treatment of IBD. Prevotella histicola (P. histicola), an emerging probiotic, possesses apparently anti-inflammatory bioactivity. However, the role and underlying mechanism of P. histicola on IBD remain unclear. Hence, we probe into the effect of P. histicola on dextran sulfate sodium (DSS)-induced colitis and clarified the potential mechanism. Our results revealed that DSS-induced colonic inflammatory response and damaged epithelial barrier in mice were attenuated by oral administration of P. histicola. Moreover, supplementary P. histicola significantly enriched short-chain fatty acid (SCFA)-producing bacteria (Lactobacillus, and Bacillus) and reduced pathogenic bacteria (Erysipelotrichaceae, Clostridium, Bacteroides) in DSS-induced colitis. Notably, In DSS-treated mice, endoplasmic reticulum stress (ERS) was persistently activated in colonic tissue. Conversely, P. histicola gavage suppressed expansion of endoplasmic reticulum, downregulated PERK-ATF4-CHOP and IRE1α-JNK pathway. In vitro, the P. histicola supernatant eliminated LPS-induced higher production of pro-inflammatory cytokines regulated by NF-κB and impairment of epithelial barrier by inhibiting IRE1α-JNK signaling in Caco-2 cell. In summary, our study indicated that P. histicola mitigated DSS-induced chronic colitis via inhibiting IRE1α-JNK pathway and NF-κB signaling. These findings provide the new insights into the promotion of gut homeostasis and the application potential of P. histicola as a prebiotic for IBD in the future.


Subject(s)
Colitis , Dextran Sulfate , Endoplasmic Reticulum Stress , Endoribonucleases , Mice, Inbred C57BL , NF-kappa B , Prevotella , Protein Serine-Threonine Kinases , Animals , Colitis/chemically induced , Colitis/microbiology , Colitis/pathology , Endoplasmic Reticulum Stress/drug effects , Protein Serine-Threonine Kinases/metabolism , NF-kappa B/metabolism , Mice , Endoribonucleases/metabolism , Humans , Probiotics/therapeutic use , Signal Transduction/drug effects , Male , Colon/pathology , Colon/microbiology , Colon/drug effects , Colon/immunology , Gastrointestinal Microbiome/drug effects , MAP Kinase Signaling System/drug effects , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167104, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38437993

ABSTRACT

Ischemic stroke is the main cause of death and disability, and microglia play a crucial role in the pathophysiology of hypoxic ischemic brain injury. We found that SENP3 is highly expressed in the early stages of ischemic stroke in both in vivo and in vitro mouse models, and may be related to the deSUMOylation of the key kinase MKK7 in the TLR4/p-JNK signaling pathway. Knocking down SENP3 can inhibit the deSUMOylation of MKK7, thereby inhibiting the activation of the TLR4/p-JNK signaling pathway in an in vitro stroke model. Proteomic analysis showed that SENP3 undergoes phosphorylation at the T429 site after ischemic stroke. Computer simulation predictions show a significant enhancement of the interaction between pT429-SENP3 and MKK7, which has been confirmed through experiments on the interaction of biological macromolecules (SPR). The mitochondrial metabolic abnormalities caused by energy abnormalities in the early stages of stroke provide a good explanation for the phosphorylation of SENP3. Therefore, we used the mitochondrial complex inhibitor TTFA to reverse demonstrate that the phosphorylation of SENP3 comes from the large amount of adenosine triphosphate produced by mitochondrial abnormal metabolism caused by early oxygen glucose deficiency. Finally, proteomic analysis indicates that a significant amount of oxidative phosphorylation does occur in the early stages of stroke. In summary, targeted regulation of SENP3 phosphorylation to affect the deSUMOylation of MKK7 may inhibit secondary inflammation in ischemic stroke.


Subject(s)
Ischemic Stroke , Mice , Animals , Computer Simulation , Proteomics , Toll-Like Receptor 4 , Cysteine Endopeptidases/metabolism , Inflammation/metabolism
3.
Int J Mol Sci ; 24(18)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37762290

ABSTRACT

Rice lacks sufficient amounts of zinc despite its vitality for human health. Leaf senescence enables redistribution of nutrients to other organs, yet Zn retransfer during deficiency is often overlooked. In this hydroponic experiment, we studied the effect of Zn deficiency on rice seedlings, focusing on the fourth leaf under control and deficient conditions. Growth phenotype analysis showed that the growth of rice nodal roots was inhibited in Zn deficiency, and the fourth leaf exhibited accelerated senescence and increased Zn ion transfer. Analyzing differentially expressed genes showed that Zn deficiency regulates more ZIP family genes involved in Zn ion retransfer. OsZIP3 upregulation under Zn-deficient conditions may not be induced by Zn deficiency, whereas OsZIP4 is only induced during Zn deficiency. Gene ontology enrichment analysis showed that Zn-deficient leaves mobilized more biological pathways (BPs) during aging, and the enrichment function differed from that of normal aging leaves. The most apparent "zinc ion transport" BP was stronger than that of normal senescence, possibly due to Zn-deficient leaves mobilizing large amounts of BP related to lipid metabolism during senescence. These results provide a basis for further functional analyses of genes and the study of trace element transfer during rice leaf senescence.


Subject(s)
Oryza , Trace Elements , Humans , Zinc , Oryza/genetics , Aging , Ions
4.
PLoS Comput Biol ; 17(10): e1009528, 2021 10.
Article in English | MEDLINE | ID: mdl-34695120

ABSTRACT

System identification techniques-projection pursuit regression models (PPRs) and convolutional neural networks (CNNs)-provide state-of-the-art performance in predicting visual cortical neurons' responses to arbitrary input stimuli. However, the constituent kernels recovered by these methods are often noisy and lack coherent structure, making it difficult to understand the underlying component features of a neuron's receptive field. In this paper, we show that using a dictionary of diverse kernels with complex shapes learned from natural scenes based on efficient coding theory, as the front-end for PPRs and CNNs can improve their performance in neuronal response prediction as well as algorithmic data efficiency and convergence speed. Extensive experimental results also indicate that these sparse-code kernels provide important information on the component features of a neuron's receptive field. In addition, we find that models with the complex-shaped sparse code front-end are significantly better than models with a standard orientation-selective Gabor filter front-end for modeling V1 neurons that have been found to exhibit complex pattern selectivity. We show that the relative performance difference due to these two front-ends can be used to produce a sensitive metric for detecting complex selectivity in V1 neurons.


Subject(s)
Models, Neurological , Neurons/physiology , Visual Cortex/physiology , Algorithms , Animals , Computational Biology , Macaca , Neural Networks, Computer
5.
Sci China Phys Mech Astron ; 56(11): 2143-2150, 2013.
Article in English | MEDLINE | ID: mdl-32288765

ABSTRACT

A model based on a thermodynamic approach is proposed for predicting the dynamics of communicable epidemics assumed to be governed by controlling efforts of multiple scales so that an entropy is associated with the system. All the epidemic details are factored into a single and time-dependent coefficient, the functional form of this coefficient is found through four constraints, including notably the existence of an inflexion point and a maximum. The model is solved to give a log-normal distribution for the spread rate, for which a Shannon entropy can be defined. The only parameter, that characterizes the width of the distribution function, is uniquely determined through maximizing the rate of entropy production. This entropy-based thermodynamic (EBT) model predicts the number of hospitalized cases with a reasonable accuracy for SARS in the year 2003. This EBT model can be of use for potential epidemics such as avian influenza and H7N9 in China.

6.
Langmuir ; 23(9): 4892-6, 2007 Apr 24.
Article in English | MEDLINE | ID: mdl-17385899

ABSTRACT

Water striders are a type of insect with the remarkable ability to stand effortlessly and walk quickly on water. This article reports the water repellency mechanism of water strider legs. Scanning electron microscope (SEM) observations reveal the uniquely hierarchical structure on the legs, consisting of numerous oriented needle-shaped microsetae with elaborate nanogrooves. The maximal supporting force of a single leg against water surprisingly reaches up to 152 dynes, about 15 times the total body weight of this insect. We theoretically demonstrate that the cooperation of nanogroove structures on the oriented microsetae, in conjunction with the wax on the leg, renders such water repellency. This finding might be helpful in the design of innovative miniature aquatic devices and nonwetting materials.


Subject(s)
Extremities/anatomy & histology , Insecta/anatomy & histology , Animals , Body Weight , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Scanning , Sensitivity and Specificity , Surface Properties , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...