Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36614214

ABSTRACT

Fruiting bodies of Cordyceps cicadae (CC) have been reported to have a therapeutic effect in chronic kidney disease. Due to the rare and expensive resources from natural habitats, artificially cultivated mycelia using submerged liquid cultivation of CC (CCM) have been recently developed as an alternative to scarce sources of CC. However, little is known regarding potential protective effects of CCM against cyclosporine A (CsA)-induced acute nephrotoxicity in vivo and in vitro. In this study, male Sprague-Dawley rats were divided into six groups: control, CCM (40 mg and 400 mg/kg, orally), CsA (10 mg/kg, oral gavage), and CsA + CCM (40 mg and 400 mg/kg, orally). At the end of the study on day 8, all rats were sacrificed, and the blood and kidneys retrieved. CsA-induced acute nephrotoxicity was evident by increased levels of blood urea nitrogen (BUN). Levels of the endoplasmic reticulum (ER) resident chaperone glucose regulated protein 78 (GRP 78) were increased significantly in rats with acute nephrotoxicity. BUN and GRP 78 were significantly ameliorated in synchronous oral groups of CCM (40 or 400 mg/kg) plus CsA. Examination of hematoxylin and eosin stained kidney tissues revealed that the combined treatment of CCM slightly improved vacuolization in renal tubules upon CsA-induced damage. CsA-induced down-regulation of protein expression of magnesium ion channel proteins and transient receptor potential melastatin 6 and 7 were abolished by the combined treatment of CCM. CCM has the potential to protect the kidney against CsA-induced nephrotoxicity by reducing magnesium ion wasting, tubular cell damage, and ER stress demonstrated further by human renal proximal tubular epithelial cell line HK-2. Our results contribute to the in-depth understanding of the role of polysaccharides and nucleobases as the main secondary metabolites of CCM in the defense system of renal functions in CsA-induced acute nephrotoxicity.


Subject(s)
Cyclosporine , Kidney Diseases , Animals , Male , Rats , Cyclosporine/toxicity , Endoplasmic Reticulum Chaperone BiP , Immunosuppressive Agents/therapeutic use , Kidney/metabolism , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Magnesium/metabolism , Protein Serine-Threonine Kinases/metabolism , Rats, Sprague-Dawley
2.
Nanomaterials (Basel) ; 12(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35159754

ABSTRACT

To reduce surface contamination and increase battery life, MoO3 nanoparticles were coated with a high-voltage (5 V) LiNi0.5Mn1.5O4 cathode material by in-situ method during the high-temperature annealing process. To avoid charging by more than 5 V, we also developed a system based on anode-limited full-cell with a negative/positive electrode (N/P) ratio of 0.9. The pristine LiNi0.5Mn1.5O4 was initially prepared by high-energy ball-mill with a solid-state reaction, followed by a precipitation reaction with a molybdenum precursor for the MoO3 coating. The typical structural and electrochemical behaviors of the materials were clearly investigated and reported. The results revealed that a sample of 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode exhibited an optimal electrochemical activity, indicating that the MoO3 nanoparticle coating layers considerably enhanced the high-rate charge-discharge profiles and cycle life performance of LiNi0.5Mn1.5O4 with a negligible capacity decay. The 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode could achieve high specific discharge capacities of 131 and 124 mAh g-1 at the rates of 1 and 10 C, respectively. In particular, the 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode retained its specific capacity (87 mAh g-1) of 80.1% after 500 cycles at a rate of 10 C. The Li4Ti5O12/LiNi0.5Mn1.5O4 full cell based on the electrochemical-cell (EL-cell) configuration was successfully assembled and tested, exhibiting excellent cycling retention of 93.4% at a 1 C rate for 100 cycles. The results suggest that the MoO3 nano-coating layer could effectively reduce side reactions at the interface of the LiNi0.5Mn1.5O4 cathode and the electrolyte, thus improving the electrochemical performance of the battery system.

3.
JACS Au ; 1(9): 1389-1398, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34604849

ABSTRACT

The O-O bond length is often used as a structural indicator to determine the valence states of bound O2 ligands in biological metal-dioxygen intermediates and related biomimetic complexes. Here, we report very distinct O-O bond lengths found for three crystallographic forms (1.229(4), 1.330(4), 1.387(2) Šat 100 K) of a side-on iron-dioxygen species. Despite their different O-O bond distances, all forms possess the same electronic structure of Fe(III)-O2 •-, as evidenced by their indistinguishable spectroscopic features. Density functional theory and ab initio calculations, which successfully reproduce spectroscopic parameters, predict a flat potential energy surface of an η2-O2 motif binding to the iron center regarding the O-O distance. Therefore, the discrete O-O bond lengths observed likely arise from differential intermolecular interactions in the second coordination sphere. The work suggests that the O-O distance is not a reliable benchmark to unequivocally identify the valence state of O2 ligands for metal-dioxygen species in O2-utilizing metalloproteins and synthetic complexes.

4.
Nanomaterials (Basel) ; 11(4)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923729

ABSTRACT

A novel design and synthesis methodology is the most important consideration in the development of a superior electrocatalyst for improving the kinetics of oxygen electrode reactions, such as the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in Li-O2 battery application. Herein, we demonstrate a glycine-assisted hydrothermal and probe sonication method for the synthesis of a mesoporous spherical La0.8Ce0.2Fe0.5Mn0.5O3 perovskite particle and embedded graphene nanosheet (LCFM(8255)-gly/GNS) composite and evaluate its bifunctional ORR/OER kinetics in Li-O2 battery application. The physicochemical characterization confirms that the as-formed LCFM(8255)-gly perovskite catalyst has a highly crystalline structure and mesoporous morphology with a large specific surface area. The LCFM(8255)-gly/GNS composite hybrid structure exhibits an improved onset potential and high current density toward ORR/OER in both aqueous and non-aqueous electrolytes. The LCFM(8255)-gly/GNS composite cathode (ca. 8475 mAh g-1) delivers a higher discharge capacity than the La0.5Ce0.5Fe0.5Mn0.5O3-gly/GNS cathode (ca. 5796 mAh g-1) in a Li-O2 battery at a current density of 100 mA g-1. Our results revealed that the composite's high electrochemical activity comes from the synergism of highly abundant oxygen vacancies and redox-active sites due to the Ce and Fe dopant in LaMnO3 and the excellent charge transfer characteristics of the graphene materials. The as-developed cathode catalyst performed appreciable cycle stability up to 55 cycles at a limited capacity of 1000 mAh g-1 based on conventional glass fiber separators.

5.
Dalton Trans ; 49(41): 14393-14396, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33057505

ABSTRACT

A V(iii) complex bearing a tris(thiolato)phoshine derivative mediates the reduction of nitrite without the assistance of external protons or oxophilic substrates. The metal site plays dual roles for nitrite binding and deoxygenation. The reaction is monitored by spectroscopy combined with isotopic labeling experiments. The formed product, a {VNO}4 species, is isolated and characterized.

6.
Inorg Chem ; 55(2): 566-72, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26699874

ABSTRACT

Two mononuclear nonheme Fe(III) complexes, [PPh4][Fe(III)(PS3″)(OCH3)] (1) and [PPh4][Fe(III)(PS3″)(Cl)] (2), supported by a tris(benzenethiolato)phosphine derivative PS3″ (PS3″ = P(C6H3-3-Me3Si-2-S)3(3-)) have been synthesized and characterized. The structures resolved from X-ray crystallography show that Fe(III) centers in both complexes adopt distorted trigonal-bipyramidal geometry with a methoxide or a chloride binding in the axial position. The magnetic data for both are consistent with intermediate-spin Fe(III) centers with a C3 symmetry (S = 3/2 ground state). The bound methoxide in 1 is labile and can be replaced by a CH3CN molecule. The forming Fe(III)-CH3CN species can be further reduced by cobaltcene quantitatively to a stable Fe(II)-CH3CN complex, [Fe(PS3″)(CH3CN)](-). One-electron oxidation of 2 by ferrocenium gave a Fe(IV) analogue, [Fe(IV)(PS3″)(Cl)]. Importantly, the Fe(III)-OCH3 moiety in complex 1 acts as a strong nucleophile that activates the C-Cl bond in CH2Cl2, leading to the formation of complex 2 quantitatively. Complex 1 also reacts with other electrophiles, benzyl chloride and benzyl bromide, to generate Fe(III)-X species (X = Cl or Br). The reactions were investigated and monitored by UV-vis-NIR, NMR, and ESI-MS spectroscopies.

7.
Mater Sci Eng C Mater Biol Appl ; 48: 165-71, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25579910

ABSTRACT

Lithospermum erythrorhizon has been proved to be anti-inflammatory, by recent studies. This study extracts L. erythrorhizon with ethanol at various solid-liquid ratios (1:4, 1:6, 1:8, and 1:12), extraction temperatures (40°C, 50°C, and 60°C), and extraction times (4, 24 and 36h) in order to determine the optimal parameters. The optimal parameters are extracted and condensed into L. erythrorhizon extract; then the antibacterial property and cell compatibility of L. erythrorhizon extract are evaluated with various concentrations of L. erythrorhizon extract solution and different weights of L. erythrorhizon extract powder, respectively. The concentrations of solution are 0.1mg/ml, 0.5mg/ml, 1.0mg/ml, and 2.0mg/ml and ethanol is chosen as the solvent, and different weights of powder are varied as 0.1mg, 1.0mg, 2.0mg, and 10mg. The cell viability test and animal study are performed on L. erythrorhizon microcapsules. The experiment results show that sodium alginate/pectin L. erythrorhizon (SPL) microcapsules possess a 120-hour drug release. The results of cell viability and animal study show that the L. erythrorhizon microcapsules (SPL) have good cell viability (99%) and can help in the wound healing process (the wound size reduction reaches 91.3% on Day 11).


Subject(s)
Anti-Bacterial Agents/pharmacology , Capsules/chemistry , Lithospermum/chemistry , Wound Healing/drug effects , Alginates/chemistry , Animals , Anti-Bacterial Agents/chemistry , Capsules/pharmacology , Cell Survival/drug effects , Drug Delivery Systems , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Male , Naphthoquinones/administration & dosage , Naphthoquinones/chemistry , Pectins/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Powders , Rats, Sprague-Dawley , Staphylococcus aureus/drug effects
8.
Opt Express ; 21(19): 21840-6, 2013 Sep 23.
Article in English | MEDLINE | ID: mdl-24104076

ABSTRACT

The direct optical switching of bistable cholesteric textures (i.e., planar and focal conic textures) in chiral azobenzene-doped liquid crystals (LCs) is demonstrated. Chiral azobenzene is a chiral dopant with optically tuned helical twisting power that results from the photo-isomerization between trans- and cis- isomers via exposure to UV or visible light. The pitch length of the material can be optically and repeatedly elongated and shortened. With regard to free energy, LCs tend to be stable at planar (focal conic) textures when pitch length is elongated (shortened) by exposure to UV (visible) light. Thus, direct optical switchable LC displays are investigated.

9.
Biosens Bioelectron ; 34(1): 185-90, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22365364

ABSTRACT

This study describes the development of a simple, sensitive, and selective detection system for Hg(2+) ion by combining nanoparticle extraction, fluorescent dye labeling, and flow injection analysis (FIA) detection. Repeats of 33 thymine nucleotides-functionalized silver nanoparticles (T(33)-AgNPs) specifically capture Hg(2+) from aqueous solution through the coordination between T(33) and Hg(2+). Meanwhile, Hg(2+) ion drives a T(33) conformational change from a random coil to a folded structure. The T(33)-Hg(2+)complexes adsorbed on the NP surface were collected from the initial sample by centrifugation, and they were then detached from the NP surface by addition of H(2)O(2). The T(33)-Hg(2+) complexes preferentially bind to SYBR Green I (SG), enhancing the SG fluorescence. By contrast, SG fluoresces only weakly in the presence of T(33) alone. The extraction efficiency of Hg(2+) was highly dependent on polythymine length, the concentration of T(33)-AgNPs, and the incubaton time of T(33)-AgNPs with Hg(2+). Under optimal extraction and labeling conditions, FIA detection showed the limit of detection (at a signal-to-noise ratio of three) for Hg(2+)of 3 pM. The selectivity of our analytical system is more than 1000-fold for Hg(2+) over any metal ions. We validated the applicability of this system for the determination of Hg(2+) concentrations in tap water.


Subject(s)
Biosensing Techniques/methods , Mercury/isolation & purification , Thymine Nucleotides/chemistry , Water Pollutants, Chemical/isolation & purification , Benzothiazoles , Diamines , Fluorescence , Hydrogen Peroxide/chemistry , Lasers , Mercury/chemistry , Nanoparticles/chemistry , Oligonucleotides/chemistry , Organic Chemicals/chemistry , Quinolines , Silver/chemistry , Water Pollutants, Chemical/chemistry
10.
Anal Chem ; 82(21): 8775-9, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20945873

ABSTRACT

This study reports a simple colorimetric method for the sensitive detection of S-adenosylhomocysteine hydrolase (SAHH) activity and inhibition using fluorosurfactant-capped gold nanoparticles (FSN-AuNPs). FSN stabilizes the AuNPs against conditions of high ionic strength, and FSN-AuNPs are merely aggregated in the presence of homocysteine (HCys) and cysteine. Because of this feature, FSN-AuNPs were found to be dispersed in the presence of S-adenosylhomocysteine (SAH) that lacks a free thiol group. After SAHH catalyzed the hydrolysis of SAH, the produced HCys molecules were bound to the surface of AuNPs through the formation of Au-S bonds. As a result, the nanoparticle (NP) aggregation occurred through electrostatic attraction between each HCys-attached AuNP. This approach had a minimum detectable concentration of 100 units/L (~6 nM). Additionally, because adenosine analogs are capable of inhibiting SAHH activity, the addition of adenosine analogs to a solution containing SAH and SAHH resulted in the suppression of hydrolyzed SAH-induced NP aggregation. Adenosine analogs exhibited the following trend in the half-maximal inhibitory concentrations: adenosine > adenosine monophosphate > adenosine diphosphate ~ adenosine triphosphate. We have demonstrated that the combination of SAHH inhibition and FSN-AuNPs can be utilized for the selective detection of adenosine.


Subject(s)
Adenosylhomocysteinase/antagonists & inhibitors , Adenosylhomocysteinase/metabolism , Enzyme Assays/methods , Gold/chemistry , Nanoparticles/chemistry , S-Adenosylhomocysteine/metabolism , Adenosine/analogs & derivatives , Adenosine/pharmacology , Adenosylhomocysteinase/analysis , Animals , Biosensing Techniques/methods , Colorimetry/methods , Enzyme Inhibitors/pharmacology , Halogenation , Limit of Detection , Rabbits , Surface-Active Agents/chemistry
11.
IEEE Trans Image Process ; 14(8): 1043-56, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16121453

ABSTRACT

This paper presents a new approach to represent an image by "verge points," which are defined as high-curvature points on the image surface. This representation offers a compact and reversible way to preserve the essence of the original image. Various applications, such as compression, edge detection, image enhancement, and image editing, can be achieved based on this representation. In this paper, the whole procedure for verge point representation is presented. Based on these verge points, image reconstruction can be easily achieved via iterative linear interpolation. These extracted verge points with compatible properties are further linked into verge curves to offer more compact representation. Progressive representation is also developed based on a multiscale extraction scheme. Some potential applications are then presented to demonstrate the versatility of this representation.


Subject(s)
Algorithms , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Information Storage and Retrieval/methods , Signal Processing, Computer-Assisted , Artificial Intelligence , Pattern Recognition, Automated/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...