Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.730
Filter
1.
IEEE Trans Cybern ; PP2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963743

ABSTRACT

Cascading failures pose a significant security threat to networked systems, with recent global incidents underscoring their destructive potential. The security threat of cascading failures has always existed, but the evolution of cyber-physical systems (CPSs) has introduced novel dimensions to cascading failures, intensifying their threats owing to the intricate fusion of cyber and physical domains. Addressing these threats requires a nuanced understanding achieved through failure modeling and vulnerability analysis. By analyzing the historical failures in different CPSs, the cascading failure in CPSs is comprehensively defined as a complicated propagation process in coupled cyber and physical systems, initialized by natural accidents or human interference, which exhibits a progressive evolution within the networked structure and ultimately results in unexpected large-scale systemic failures. Subsequently, this study advances the development of instructions for modeling cascading failures and conducting vulnerability analyses within CPSs. The examination also delves into the core challenges inherent in these methodologies. Moreover, a comprehensive survey and classification of extant research methodologies and solutions are undertaken, accompanied by a concise evaluation of their advancements and limitations. To validate the performance of these methodologies, numerical experiments are conducted to ascertain their distinct features. In conclusion, this article advocates for future research initiatives, particularly emphasizing the exploration of uncertainty analysis, defense strategies, and verification platforms. By addressing these areas, the resilience of CPSs against cascading failures can be significantly enhanced.

2.
Gynecol Endocrinol ; 40(1): 2368832, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38946301

ABSTRACT

OBJECTIVE: To determine whether ultrasonic manifestations of Hashimoto's thyroiditis (HT) related to embryo qualities or pregnancy outcomes in women with thyroid autoimmunity (TAI) undergoing in vitro fertilization/intracytoplasmic sperm injection. METHODS: Our study was a retrospective cohort study. A total of 589 euthyroid women enrolled from January 2017 to December 2019. 214 TAI women and 375 control women were allocated in each group according to serum levels of thyroid peroxidase antibodies (TPOAb) and/or anti-thyroglobulin antibodies (TgAb). Basal serum hormone levels and thyroid ultrasound were assessed, embryo qualities, pregnancy outcomes were collected from medical records. Diagnosis of thyroid ultrasound was used for subanalysis. Logistic regression was used to evaluate outcomes of embryo development and pregnancy. RESULTS: Implantation rate was significantly lower in euthyroid women with TAI compared with control group (TAI group: 65.5% vs. Control group: 73.0%, adjusted OR (95% CI): 0.65 (0.44, 0.97), p = 0.04). We further stratified TAI group into two groups: one group with HT features under ultrasound and another group with normal thyroid ultrasound. After regression analysis, TAI women with HT morphological changes had a lower chance of implantation compared with control group (TAI group with HT: 64.1% vs. Control group: 73.0%, adjusted OR (95% CI): 0.63 (0.41, 0.99), p = 0.04), while there was no significant difference on implantation rate between TAI women with normal thyroid ultrasound and control group. Other outcomes, such as embryo qualities and pregnancy rate, were comparable between TAI and control groups. CONCLUSIONS: A higher risk of implantation failure was seen among euthyroid women with TAI, especially women with HT morphological changes under ultrasound. The underlying mechanisms of implantation failure among euthyroid HT patients need further research.


Subject(s)
Embryo Implantation , Sperm Injections, Intracytoplasmic , Thyroid Gland , Ultrasonography , Humans , Female , Adult , Pregnancy , Retrospective Studies , Thyroid Gland/diagnostic imaging , Thyroid Gland/immunology , Fertilization in Vitro , Hashimoto Disease/blood , Hashimoto Disease/diagnostic imaging , Hashimoto Disease/immunology , Pregnancy Rate , Autoantibodies/blood , Pregnancy Outcome , Autoimmunity
3.
ACS Cent Sci ; 10(6): 1283-1294, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38947206

ABSTRACT

High capacity and long cycling often conflict with each other in electrode materials. Despite extensive efforts in structural design, it remains challenging to simultaneously achieve dual high electrochemical properties. In this study, we prepared brand-new completely uniform mesoporous cubic-cages assembled by large d-spacing Ni(OH)2 coupled monolayers intercalated with VO4 3- (NiCMCs) using a biomimetic approach. Such unique mesoporous structural configuration results in an almost full atomic exposure with an amazing specific surface area of 505 m2/g and atomic utilization efficiency close to the theoretical limit, which is the highest value and far surpasses all of the reported Ni(OH)2. Thus, a breakthrough in simultaneously attaining high capacity approaching the 100% theoretical value and robust cycling of 10,000 cycles is achieved, setting a new precedent in achieving double-high attributes. When combined with high-performance Bi2O3 hexagonal nanotubes, the resulting aqueous battery exhibits an ultrahigh energy density of 115 Wh/kg and an outstanding power density of 9.5 kW/kg among the same kind. Characterizations and simulations reveal the important role of large interlayer spacing intercalation units and mesoporous cages for excellent electrochemical thermodynamics and kinetics. This work represents a milestone in developing "double-high" electrode materials, pointing in the direction for related research and paving the way for their practical application.

4.
Interdiscip Sci ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955920

ABSTRACT

Protein complexes perform diverse biological functions, and obtaining their three-dimensional structure is critical to understanding and grasping their functions. In many cases, it's not just two proteins interacting to form a dimer; instead, multiple proteins interact to form a multimer. Experimentally resolving protein complex structures can be quite challenging. Recently, there have been efforts and methods that build upon prior predictions of dimer structures to attempt to predict multimer structures. However, in comparison to monomeric protein structure prediction, the accuracy of protein complex structure prediction remains relatively low. This paper provides an overview of recent advancements in efficient computational models for predicting protein complex structures. We introduce protein-protein docking methods in detail and summarize their main ideas, applicable modes, and related information. To enhance prediction accuracy, other critical protein-related information is also integrated, such as predicting interchain residue contact, utilizing experimental data like cryo-EM experiments, and considering protein interactions and non-interactions. In addition, we comprehensively review computational approaches for end-to-end prediction of protein complex structures based on artificial intelligence (AI) technology and describe commonly used datasets and representative evaluation metrics in protein complexes. Finally, we analyze the formidable challenges faced in current protein complex structure prediction tasks, including the structure prediction of heteromeric complex, disordered regions in complex, antibody-antigen complex, and RNA-related complex, as well as the evaluation metrics for complex assessment. We hope that this work will provide comprehensive knowledge of complex structure predictions to contribute to future advanced predictions.

5.
Zhongguo Zhen Jiu ; 44(7): 807-20, 2024 Jul 12.
Article in Chinese | MEDLINE | ID: mdl-38986595

ABSTRACT

OBJECTIVE: To explore the potential mechanism of electroacupuncture (EA) for vascular dementia (VD) using tandem mass tag (TMT) quantitative proteomics technology. METHODS: Among 80 male SPF SD rats, 78 rats which met the selection criteria through the Morris water maze test were selected and randomly divided into a sham surgery group (18 rats) and a surgery group (60 rats). VD model was established by four-vessel occlusion (4-VO) method in the surgery group, and 36 rats with successful modeling were randomly assigned to a model group (18 rats) and an EA group (18 rats). Each group was further divided into three subgroups based on intervention duration, with each subgroup containing 6 rats. Seven days after model establishment, the EA group received EA intervention at left and right "Sishencong" (EX-HN 1) and bilateral "Fengchi" (GB 20), with continuous wave at a frequency of 2 Hz and current intensity of 1 mA, daily for 30 min, with subgroups receiving EA for 7, 14, or 21 d respectively. Cognitive function before and after interventions was assessed using Morris water maze. Proteomic analysis was conducted on the optimal EA subgroup and corresponding sham surgery and model subgroups, identifying differentially expressed proteins and analyzing them through bioinformatics. Differentially expressed target proteins was performed using parallel reaction monitoring (PRM) and Western blot techniques. RESULTS: Compared to the sham surgery group, the model group exhibited prolonged escape latency and reduced number of platform crossings (P<0.01); compared with model group, the EA group showed reductions in escape latency and increased platform crossings after 7, 14, and 21 days of intervention (P<0.01, P<0.05). Compared to the 7 and 14-day intervention, the rats in the EA group of 21-day intervention showed the most significant improvements in reductions of escape latency and increased platform crossings (P<0.01, P<0.05), and was selected for further proteomic, PRM analyses, and Western blot validation. Compared to the sham surgery group, the model group displayed 71 differentially expressed proteins, with 50 up-regulated and 21 down-regulated proteins; compared to the model group, the EA group had 54 differentially expressed proteins, with 30 up-regulated and 24 down-regulated proteins. Functional enrichment and clustering analyses indicated that these proteins were primarily associated with cellular processes, metabolic processes, phagocytosis recognition, immune response, and regulation of extracellular matrix, etc. Enrichment was observed in the mammalian target of rapamycin (mTOR) signaling pathway and neurotrophic factors signaling pathways, involving glycogen synthase kinase 3ß (GSK3ß) and mitogen-activated protein kinase kinase 2 (Map2k2), with PRM and Western blot findings consistent with the proteomic results. Which meant that compared with the model group, the protein expression of GSK3ß and Map2k2 of hippocampus was increased in the EA group (P<0.01, P<0.05). CONCLUSION: EA at "Sishencong" (EX-HN 1) and "Fengchi" (GB 20) could improve cognitive function in VD rats, with the mechanism involving multiple targets and pathways, potentially related to GSK3ß, Map2k2 proteins, and the mTOR and neurotrophic factor signaling pathways.


Subject(s)
Dementia, Vascular , Electroacupuncture , Proteomics , Rats, Sprague-Dawley , Animals , Dementia, Vascular/therapy , Dementia, Vascular/metabolism , Male , Rats , Humans , Maze Learning , Memory , Disease Models, Animal
6.
Materials (Basel) ; 17(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38930204

ABSTRACT

Ferroelectric materials, with their spontaneous electric polarization, are renewing research enthusiasm for their deployment in high-performance micro/nano energy harvesting devices such as triboelectric nanogenerators (TENGs). Here, the introduction of ferroelectric materials into the triboelectric interface not only significantly enhances the energy harvesting efficiency, but also drives TENGs into the era of intelligence and integration. The primary objective of the following paper is to tackle the newest innovations in TENGs based on ferroelectric materials. For this purpose, we begin with discussing the fundamental idea and then introduce the current progress with TENGs that are built on the base of ferroelectric materials. Various strategies, such as surface engineering, either in the micro or nano scale, are discussed, along with the environmental factors. Although our focus is on the enhancement of energy harvesting efficiency and output power density by utilizing ferroelectric materials, we also highlight their incorporation in self-powered electronics and sensing systems, where we analyze the most favorable and currently accessible options in attaining device intelligence and multifunctionality. Finally, we present a detailed outlook on TENGs that are based on ferroelectric materials.

7.
Nat Commun ; 15(1): 5039, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866775

ABSTRACT

Urate, the physiological form of uric acid and a potent antioxidant in serum, plays a pivotal role in scavenging reactive oxygen species. Yet excessive accumulation of urate, known as hyperuricemia, is the primary risk factor for the development of gout. The high-capacity urate transporter GLUT9 represents a promising target for gout treatment. Here, we present cryo-electron microscopy structures of human GLUT9 in complex with urate or its inhibitor apigenin at overall resolutions of 3.5 Å and 3.3 Å, respectively. In both structures, GLUT9 exhibits an inward open conformation, wherein the substrate binding pocket faces the intracellular side. These structures unveil the molecular basis for GLUT9's substrate preference of urate over glucose, and show that apigenin acts as a competitive inhibitor by occupying the substrate binding site. Our findings provide critical information for the development of specific inhibitors targeting GLUT9 as potential therapeutics for gout and hyperuricemia.


Subject(s)
Apigenin , Cryoelectron Microscopy , Glucose Transport Proteins, Facilitative , Uric Acid , Humans , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transport Proteins, Facilitative/antagonists & inhibitors , Glucose Transport Proteins, Facilitative/chemistry , Uric Acid/metabolism , Uric Acid/chemistry , Apigenin/pharmacology , Apigenin/chemistry , Binding Sites , Protein Binding , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Models, Molecular , Gout/drug therapy , Gout/metabolism , HEK293 Cells
8.
J Control Release ; 372: 347-361, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38908757

ABSTRACT

Diabetic nephropathy is a severe complication of diabetes. Treatment of diabetic nephropathy is an important challenge due to persistent hyperglycemia and elevated levels of reactive oxygen species (ROS) in the kidney. Herein, we designed a glycopolymersome that can treat type 2 diabetic nephropathy by effectively inhibiting hyperglycemia and ROS-associated diabetic nephropathy pathogenesis. The glycopolymersome is self-assembled from phenylboronic acid derivative-containing copolymer, poly(ethylene oxide)45-block-poly[(aspartic acid)13-stat-glucosamine24-stat-(phenylboronic acid)18-stat-(phenylboronic acid pinacol ester)3] [PEO45-b-P(Asp13-stat-GA24-stat-PBA18-stat-PAPE3)]. PBA segment can reversibly bind blood glucose or GA segment for long-term regulation of blood glucose levels; PAPE segment can scavenge excessive ROS for renoprotection. In vitro studies confirmed that the glycopolymersomes exhibit efficient blood glucose responsiveness within 2 h and satisfactory ROS-scavenging ability with 500 µM H2O2. Moreover, the glycopolymersomes display long-acting regulation of blood glucose levels in type 2 diabetic nephropathy mice within 32 h. Dihydroethidium staining revealed that these glycopolymersomes reduced ROS to normal levels in the kidney, which led to 61.7% and 76.6% reduction in creatinine and urea levels, respectively, along with suppressing renal apoptosis, collagen accumulation, and glycogen deposition in type 2 diabetic nephropathy mice. Notably, the polypeptide-based glycopolymersome was synthesized by ring-opening polymerization (ROP) of N-carboxyanhydrides (NCAs), thereby exhibiting favorable biodegradability. Overall, we proposed a new glycopolymersome strategy for 'drug-free' treatment of diabetic nephropathy, which could be extended to encompass the design of various multifunctional nanoparticles targeting diabetes and its associated complications.

9.
Nucleic Acids Res ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850159

ABSTRACT

Genomic instability is one of the hallmarks of cancer. While loss of histone demethylase KDM6A increases the risk of tumorigenesis, its specific role in maintaining genomic stability remains poorly understood. Here, we propose a mechanism in which KDM6A maintains genomic stability independently on its demethylase activity. This occurs through its interaction with SND1, resulting in the establishment of a protective chromatin state that prevents replication fork collapse by recruiting of RPA and Ku70 to nascent DNA strand. Notably, KDM6A-SND1 interaction is up-regulated by KDM6A SUMOylation, while KDM6AK90A mutation almost abolish the interaction. Loss of KDM6A or SND1 leads to increased enrichment of H3K9ac and H4K8ac but attenuates the enrichment of Ku70 and H3K4me3 at nascent DNA strand. This subsequently results in enhanced cellular sensitivity to genotoxins and genomic instability. Consistent with these findings, knockdown of KDM6A and SND1 in esophageal squamous cell carcinoma (ESCC) cells increases genotoxin sensitivity. Intriguingly, KDM6A H101D & P110S, N1156T and D1216N mutations identified in ESCC patients promote genotoxin resistance via increased SND1 association. Our finding provides novel insights into the pivotal role of KDM6A-SND1 in genomic stability and chemoresistance, implying that targeting KDM6A and/or its interaction with SND1 may be a promising strategy to overcome the chemoresistance.

10.
Nat Commun ; 15(1): 5495, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38944644

ABSTRACT

Dry reforming of methane (DRM) is a highly endothermic process, with its development hindered by the harsh thermocatalytic conditions required. We propose an innovative DRM approach utilizing a 16 W pulsed laser in combination with a cost-effective Mo2C catalyst, enabling DRM under milder conditions. The pulsed laser serves a dual function by inducing localized high temperatures and generating *CH plasma on the Mo2C surface. This activates CH4 and CO2, significantly accelerating the DRM reaction. Notably, the laser directly generates *CH plasma from CH4 through thermionic emission and cascade ionization, bypassing the traditional step-by-step dehydrogenation process and eliminating the rate-limiting step of methane cracking. This method maintains a carbon-oxygen balanced environment, thus preventing the deactivation of the Mo2C catalyst due to CO2 oxidation. The laser-catalytic DRM achieves high yields of H2 (14300.8 mmol h-1 g-1) and CO (14949.9 mmol h-1 g-1) with satisfactory energy efficiency (0.98 mmol kJ-1), providing a promising alternative for high-energy-consuming catalytic systems.

11.
Materials (Basel) ; 17(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38893858

ABSTRACT

To investigate the axial compressive behavior of reinforced concrete-filled square glass-fiber-reinforced polymer(GFRP) tubular (RCFSGT) columns, 17 specimens were designed with variations in GFRP tube wall thickness, spiral reinforcement yield strength, and spiral reinforcement ratio. A detailed model was developed using the finite element software ABAQUS, enabling in-depth mechanistic analysis and expanded parameter studies. The results indicate that the failure types of the specimens are all manifested as GFRP square tube cracking, and the core concrete is subjected to crushing or shear failure. The inclusion of a reinforcement cage can significantly enhance the load-bearing capacity and ductility of the specimen. Furthermore, as the yield strength and reinforcement ratio of the spiral reinforcement increase, so does the load-bearing capacity of the specimen. The finite element simulation results align well with the experimental findings. As the wall thickness of the GFRP square tube increases from 2 mm to 6 mm, the load-bearing capacity improves by approximately 19.69%. With the yield strength of the spiral reinforcement rising from 200 MPa to 400 MPa, the specimen's load-bearing capacity shows an increase of approximately 7.55%. However, as its yield strength continues to increase, there is minimal change in the load-bearing capacity. When the stirrup ratio of spiral reinforcement rises from 0.33% to 2.26%, the specimen's load-bearing capacity experiences an increase of approximately 56.90%.

12.
Mater Today Bio ; 26: 101099, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840797

ABSTRACT

Advancements in tissue engineering are crucial for successfully healing tendon-bone connections, especially in situations like anterior cruciate ligament (ACL) restoration. This study presents a new and innovative three-dimensional scaffold, reinforced with nanofibers, that is specifically intended for acellular tendon complexes. The scaffold consists of a distinct layered arrangement comprising an acellular tendon core, a middle layer of polyurethane/type I collagen (PU/Col I) yarn, and an outside layer of poly (L-lactic acid)/bioactive glass (PLLA/BG) nanofiber membrane. Every layer is designed to fulfill specific yet harmonious purposes. The acellular tendon core is a solid structural base and a favorable environment for tendon cell functions, resulting in considerable tensile strength. The central PU/Col I yarn layer is vital in promoting the tendinogenic differentiation of stem cells derived from tendons and increasing the expression of critical tendinogenic factors. The external PLLA/BG nanofiber membrane fosters the process of bone marrow mesenchymal stem cells differentiating into bone cells and enhances the expression of markers associated with bone formation. Our scaffold's biocompatibility and multi-functional design were confirmed through extensive in vivo evaluations, such as histological staining and biomechanical analyses. These assessments combined showed notable enhancements in ACL repair and healing. This study emphasizes the promise of multi-layered nanofiber scaffolds in orthopedic tissue engineering and also introduces new possibilities for the creation of improved materials for regenerating the tendon-bone interface.

13.
Opt Express ; 32(12): 20904-20914, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38859459

ABSTRACT

Despite its widespread significance, the temporal coupled-mode theory (CMT) lacks a foundational validation based on electromagnetic principles and stands as a phenomenological theory relying on fitted coupling coefficients. We employ an ab initio Maxwellian approach using quasinormal-mode theory to derive an "exact" Maxwell evolution (EME) equation for resonator dynamics. While the resulting differential equation bears resemblance to the classical one, it introduces novel terms embodying distinct physics, suggesting that the CMT predictions could be faulted by dedicated experiments, for instance carried out with short and off-resonance pulses, or with resonators of sizes comparable to or greater than the wavelength. Nonetheless, our examination indicates that, despite its inherent lack of strictness, the CMT enables precise predictions for numerous experiments due to the flexibility provided by the fitted coupling coefficients. The new EME equation is anticipated to be applicable to all electromagnetic resonator geometries, and the theoretical approach we have taken can be extended to other wave physics.

14.
Cancer Immunol Immunother ; 73(8): 159, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850359

ABSTRACT

BACKGROUND: Although, immune checkpoint inhibitors (ICIs) have been widely applied in the therapy of malignant tumors, the efficacy and safety of ICIs in patients with tumors and pre-existing CAD, especially chronic coronary syndromes (CCS) or their risk factors (CRF), is not well identified. METHODS: This was a nationwide multicenter observational study that enrolled participants who diagnosed with solid tumors and received ICIs therapy. The main efficacy indicators were progression-free survival (PFS) and overall survival (OS), followed by objective response rate (ORR) and disease control rate (DCR). Safety was assessed by describing treatment-related adverse events (TRAEs) during ICIs therapy evaluated by the Common Terminology Criteria for Adverse Events 5.0 (CTCAE 5.0). RESULTS: In the current research, we retrospectively analyzed the data of 551 patients diagnosed with solid tumors and received ICIs therapy, and these patients were divided into CCS/CRF group and non-CCS/CRF group. Patients with CCS/CRF had more favorable PFS and OS than patients without CCS/CRF (P < 0.001) and the pre-existing CCS/CRF was a protective factor for survival. The ORR (51.8% vs. 39.1%) and DCR (95.8% vs. 89.2%) were higher in CCS/CRF group than in non-CCS/CRF group (P = 0.003, P = 0.006). In this study, there was no significant difference in treatment-related adverse events (TRAEs), including immune-related adverse events (irAEs), between the two groups. CONCLUSIONS: We concluded that ICIs appear to have better efficacy in malignant solid tumor patients with pre-existing CCS/CRF and are not accompanied by more serious irAEs.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Humans , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Female , Male , Neoplasms/drug therapy , Neoplasms/complications , Neoplasms/immunology , Middle Aged , Retrospective Studies , Aged , Risk Factors , Adult , Aged, 80 and over , Cohort Studies
15.
ACS Omega ; 9(22): 23613-23623, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38854533

ABSTRACT

Titanium dioxide nanoparticles (TiO2 NPs) have been extensively utilized in various applications. However, the regulatory mechanism behind the reproductive toxicity induced by TiO2 NP exposure remains largely elusive. In this study, we employed a Drosophila model to assess potential testicular injuries during spermatogenesis and conducted bulk RNA-Seq analysis to elucidate the underlying mechanisms. Our results reveal that while prolonged exposure to lower concentrations of TiO2 NPs (0.45 mg/mL) for 30 days did not manifest reproductive toxicity, exposure at concentrations of 0.9 and 1.8 mg/mL significantly impaired spermatid elongation in Drosophila testes. Notably, bulk RNA-seq analysis revealed that TiO2 NP exposure affected multiple metabolic pathways including carbohydrate metabolism and cytochrome P450. Importantly, the intervention of glutathione (GSH) significantly protected against reproductive toxicity induced by TiO2 NP exposure, as it restored the number of Orb-positive spermatid clusters in Drosophila testes. Our study provides novel insights into the specific detrimental effects of TiO2 NP exposure on spermatid elongation through multiple metabolic alterations in Drosophila testes and highlights the protective role of GSH in countering this toxicity.

16.
Actas Esp Psiquiatr ; 52(3): 276-288, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863043

ABSTRACT

BACKGROUND: Schizophrenia (SCZ) is a type of psychiatric disorder characterized by multiple symptoms. Our aim is to decipher the relevant mechanisms of immune-related gene signatures in SCZ. METHODS: The SCZ dataset and its associated immunoregulatory genes were retrieved using Gene Expression Omnibus (GEO) and single-sample gene set enrichment analysis (ssGSEA). Co-expressed gene modules were determined through weighted gene correlation network analysis (WGCNA). To elucidate the functional characteristics of these clusters, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used. Additionally, gene set enrichment analysis (GSEA) and Gene Set Variation Analysis (GSVA) were conducted to identify enriched pathways for the immune subgroups. A protein-protein interaction (PPI) network analysis was performed to identify core genes relevant to SCZ. RESULTS: A significantly higher immune score was observed in SCZ compared to control samples. Seven distinct gene modules were identified, with genes highlighted in green selected for further analysis. Using the Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) method, degrees of immune cell adhesion and accumulation related to 22 different immune cell types were calculated. Significantly enriched bioprocesses concerning the immunoregulatory genes with differential expressions included interferon-beta, IgG binding, and response to interferon-gamma, according to GO and KEGG analyses. Eleven hub genes related to immune infiltration emerged as key players among the three top-ranked GO terms. CONCLUSIONS: This study underscores the involvement of immunoregulatory reactions in SCZ development. Eleven immune-related genes (IFITM1 (interferon induced transmembrane protein 1), GBP1 (guanylate binding protein 1), BST2 (bone marrow stromal cell antigen 2), IFITM3 (interferon induced transmembrane protein 3), GBP2 (guanylate binding protein 2), CD44 (CD44 molecule), FCER1G (Fc epsilon receptor Ig), HLA-DRA (major histocompatibility complex, class II, DR alpha), FCGR2A (Fc gamma receptor IIa), IFI16 (interferon gamma inducible protein 16), and FCGR3B (Fc gamma receptor IIIb)) were identified as hub genes, representing potential biomarkers and therapeutic targets associated with the immune response in SCZ patients.


Subject(s)
Schizophrenia , Humans , Schizophrenia/genetics , Schizophrenia/immunology , Gene Expression Profiling
17.
Neuropharmacology ; 257: 110034, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878858

ABSTRACT

Clinical surgery can lead to severe neuroinflammation and cognitive dysfunctions. It has been reported that astrocytes mediate memory formation and postoperative cognitive dysfunction (POCD), however, the thalamic mechanism of astrocytes in mediating POCD remains unknown. Here, we report that reactive astrocytes in zona incerta (ZI) mediate surgery-induced recognition memory impairment in male mice. Immunostaining results showed that astrocytes are activated with GABA transporter-3 (GAT-3) being down-expressed, and neurons were suppressed in the ZI. Besides, our work revealed that reactive astrocytes caused increased tonic current in ZI neurons. Up-regulating the expression of GAT-3 in astrocytes ameliorates surgery-induced recognition memory impairment. Together, our work demonstrates that the reactive astrocytes in the ZI play a crucial role in surgery-induced memory impairment, which provides a new target for the treatment of surgery-induced neural dysfunctions.

18.
Sci Bull (Beijing) ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38944633

ABSTRACT

The conventional Hall effect is linearly proportional to the field component or magnetization component perpendicular to a film. Despite the increasing theoretical proposals on the Hall effect to the in-plane field or magnetization in various special systems induced by the Berry curvature, such an unconventional Hall effect has only been experimentally reported in Weyl semimetals and in a heterodimensional superlattice. Here, we report an unambiguous experimental observation of the antisymmetric planar Hall effect (APHE) with respect to the in-plane magnetic field in centrosymmetric rutile RuO2 and IrO2 single-crystal films. The measured Hall resistivity is found to be linearly proportional to the component of the applied in-plane magnetic field along a particular crystal axis and to be independent of the current direction or temperature. Both the experimental observations and theoretical calculations confirm that the APHE in rutile oxide films is induced by the Lorentz force. Our findings can be generalized to ferromagnetic materials for the discovery of anomalous Hall effects and quantum anomalous Hall effects induced by in-plane magnetization. In addition to significantly expanding knowledge of the Hall effect, this work opens the door to explore new members in the Hall effect family.

19.
ACS Biomater Sci Eng ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935742

ABSTRACT

Bone defects typically result in bone nonunion, delayed or nonhealing, and localized dysfunction, and commonly used clinical treatments (i.e., autologous and allogeneic grafts) have limited results. The multifunctional bone tissue engineering scaffold provides a new treatment for the repair of bone defects. Herein, a three-dimensional porous composite scaffold with stable mechanical support, effective antibacterial and hemostasis properties, and the ability to promote the rapid repair of bone defects was synthesized using methacrylated carboxymethyl chitosan and icariin-loaded poly-l-lactide/gelatin short fibers (M-CMCS-SFs). Icariin-loaded SFs in the M-CMCS scaffold resulted in the sustained release of osteogenic agents, which was beneficial for mechanical reinforcement. Both the porous structure and the use of chitosan facilitate the effective absorption of blood and fluid exudates. Moreover, its superior antibacterial properties could prevent the occurrence of inflammation and infection. When cultured with bone mesenchymal stem cells, the composite scaffold showed a promotion in osteogenic differentiation. Taken together, such a multifunctional composite scaffold showed comprehensive performance in antibacterial, hemostasis, and bone regeneration, thus holding promising potential in the repair of bone defects and related medical treatments.

20.
J Colloid Interface Sci ; 674: 168-177, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38925062

ABSTRACT

Traditional oxide electrocatalytic materials encounter significant challenges associated with sluggish reaction kinetics and formidable energy barriers for NH intermediates formation in electrocatalytic nitrogen fixation. The implementation of phase control emerges as an effective strategy to address these challenges. Herein, leveraging the energy localization of laser, this work achieved precise phase control of TiO2. In the optimized material system, the rutile phase TiO2 facilitates nitrogen adsorption, while the anatase phase TiO2 provides proton sources and active oxygen species. The synergistic effect of the two phases effectively enhances the electrocatalytic activity for nitrogen reduction and oxidation, with an ammonia yield reaching âˆ¼22.3 µg h-1 cm-2 and a nitrate yield reaching âˆ¼60.9 µg h-1 cm-2. Furthermore, a coupled dual-electrode system with mixed-phase titanium dioxide as both the anode and cathode successfully achieved a breakthrough in electrochemical overall nitrogen fixation. This laser precision control strategy for manipulating phase sites lays the groundwork for designing efficient catalysts for energy conversion and even energy storage nanomaterials.

SELECTION OF CITATIONS
SEARCH DETAIL
...