Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Oecologia ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822898

ABSTRACT

Disturbances from rodent engineering and human activities profoundly impact ecosystem structure and functioning. Whilst we know that disturbances modulate plant communities, comprehending the mechanisms through which rodent and human disturbances influence the functional trait diversity and trait composition of plant communities is important to allow projecting future changes and to enable informed decisions in response to changing intensity of the disturbances. Here, we evaluated the changes in functional trait diversity and composition of Afroalpine plant communities in the Bale Mountains of Ethiopia along gradients of engineering disturbances of a subterranean endemic rodent, the giant root-rat (Tachyoryctes macrocephalus Rüppell 1842) and human activities (settlement establishment and livestock grazing). We conducted RLQ (co-inertia analysis) and fourth-corner analyses to test for trait-disturbance (rodent engineering/human activities) covariation. Overall, our results show an increase in plant functional trait diversity with increasing root-rat engineering and increasing human activities. We found disturbance specific association with traits. Specifically, we found strong positive association of larger seed mass with increasing root-rat fresh burrow density, rhizomatous vegetative propagation negatively associated with increasing root-rat old burrow, and stolonifereous vegetative propagation positively associated with presence of root-rat mima mound. Moreover, both leaf size and leaf nitrogen content were positively associated with livestock dung abundance but negatively with distance from settlement. Overall, our results suggest that disturbances by rodents filter plant traits related to survival and reproduction strategies, whereas human activities such as livestock grazing act as filters for traits related to leaf economics spectrum along acquisitive resource-use strategy.

2.
Mol Ecol ; 33(5): e17271, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38279205

ABSTRACT

Due to their limited dispersal ability, fossorial species with predominantly belowground activity usually show increased levels of population subdivision across relatively small spatial scales. This may be exacerbated in harsh mountain ecosystems, where landscape geomorphology limits species' dispersal ability and leads to small effective population sizes, making species relatively vulnerable to environmental change. To better understand the environmental drivers of species' population subdivision in remote mountain ecosystems, particularly in understudied high-elevation systems in Africa, we studied the giant root-rat (Tachyoryctes macrocephalus), a fossorial rodent confined to the afro-alpine ecosystem of the Bale Mountains in Ethiopia. Using mitochondrial and low-coverage nuclear genomes, we investigated 77 giant root-rat individuals sampled from nine localities across its entire ~1000 km2 range. Our data revealed a distinct division into a northern and southern group, with no signs of gene flow, and higher nuclear genetic diversity in the south. Landscape genetic analyses of the mitochondrial and nuclear genomes indicated that population subdivision was driven by slope and elevation differences of up to 500 m across escarpments separating the north and south, potentially reinforced by glaciation of the south during the Late Pleistocene (~42,000-16,000 years ago). Despite this landscape-scale subdivision between the north and south, weak geographic structuring of sampling localities within regions indicated gene flow across distances of at least 16 km at the local scale, suggesting high, aboveground mobility for relatively long distances. Our study highlights that despite the potential for local-scale gene flow in fossorial species, topographic barriers can result in pronounced genetic subdivision. These factors can reduce genetic variability, which should be considered when developing conservation strategies.


Subject(s)
Ecosystem , Rodentia , Animals , Rodentia/genetics , Ethiopia , Gene Flow , Microsatellite Repeats , Genetic Variation/genetics , Genetics, Population
3.
Ecol Evol ; 13(7): e10337, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37465614

ABSTRACT

Human activities, directly and indirectly, impact ecological engineering activities of subterranean rodents. As engineering activities of burrowing rodents are affected by, and reciprocally affect vegetation cover via feeding, burrowing and mound building, human influence such as settlements and livestock grazing, could have cascading effects on biodiversity and ecosystem processes such as bioturbation. However, there is limited understanding of the relationship between human activities and burrowing rodents. The aim of this study was therefore to understand how human activities influence the ecological engineering activity of the giant root-rat (Tachyoryctes macrocephalus), a subterranean rodent species endemic to the Afroalpine ecosystem of the Bale Mountains of Ethiopia. We collected data on human impact, burrowing activity and vegetation during February and March of 2021. Using path analysis, we tested (1) direct effects of human settlement on the patterns of livestock grazing intensity, (2) direct and indirect impacts of humans and livestock grazing intensity on the root-rat burrow density and (3) whether human settlement and livestock grazing influence the effects of giant root-rat burrow density on vegetation and vice versa. We found lower levels of livestock grazing intensity further from human settlement than in its proximity. We also found a significantly increased giant root-rat burrow density with increasing livestock grazing intensity. Seasonal settlement and livestock grazing intensity had an indirect negative and positive effect on giant root-rat burrow density, respectively, both via vegetation cover. Analysing the reciprocal effects of giant root-rat on vegetation, we found a significantly decreased vegetation cover with increasing density of giant root-rat burrows, and indirectly with increasing livestock grazing intensity via giant root-rat burrow density. Our results demonstrate that giant root-rats play a synanthropic engineering role that affects vegetation structure and ecosystem processes.

4.
Mitochondrial DNA B Resour ; 6(8): 2191-2193, 2021.
Article in English | MEDLINE | ID: mdl-34263047

ABSTRACT

The endangered giant root-rat (Tachyoryctes macrocephalus, also known as giant mole rat) is a fossorial rodent endemic to the afro-alpine grasslands of the Bale Mountains in Ethiopia. The species is an important ecosystem engineer with the majority of the global population found within 1000 km2. Here, we present the first complete mitochondrial genome of the giant root-rat and the genus Tachyoryctes, recovered using shotgun sequencing and iterative mapping. A phylogenetic analysis including 15 other representatives of the family Spalacidae placed Tachyoryctes as sister genus to Rhizomys with high support. This position is in accordance with a recent study revealing the topology of the Spalacidae family. The full mitochondrial genome of the giant root-rat presents an important resource for further population genetic studies.

5.
J Anat ; 235(1): 96-105, 2019 07.
Article in English | MEDLINE | ID: mdl-30993709

ABSTRACT

Scaling of the heart across development can reveal the degree to which variation in cardiac morphology depends on body mass. In this study, we assessed the scaling of heart mass, left and right ventricular masses, and ventricular mass ratio, as a function of eviscerated body mass across fetal and postnatal development in Horro sheep Ovis aries (~50-fold body mass range; N = 21). Whole hearts were extracted from carcasses, cleaned, dissected into chambers and weighed. We found a biphasic relationship when heart mass was scaled against body mass, with a conspicuous 'breakpoint' around the time of birth, manifest not by a change in the scaling exponent (slope), but rather a jump in the elevation. Fetal heart mass (g) increased with eviscerated body mass (Mb , kg) according to the power equation 4.90 Mb0.88 ± 0.26 (± 95%CI) , whereas postnatal heart mass increased according to 10.0 Mb0.88 ± 0.10 . While the fetal and postnatal scaling exponents are identical (0.88) and reveal a clear dependence of heart mass on body mass, only the postnatal exponent is significantly less than 1.0, indicating the postnatal heart becomes a smaller component of body mass as the body grows, which is a pattern found frequently with postnatal cardiac development among mammals. The rapid doubling in heart mass around the time of birth is independent of any increase in body mass and is consistent with the normalization of wall stress in response to abrupt changes in volume loading and pressure loading at parturition. We discuss variation in scaling patterns of heart mass across development among mammals, and suggest that the variation results from a complex interplay between hard-wired genetics and epigenetic influences.


Subject(s)
Heart , Sheep , Animals , Body Size , Fetal Development , Heart/anatomy & histology , Heart/embryology , Mammals/anatomy & histology , Mammals/embryology , Morphogenesis , Sheep/anatomy & histology , Sheep/embryology
6.
Physiol Behav ; 96(1): 122-7, 2009 Jan 08.
Article in English | MEDLINE | ID: mdl-18824007

ABSTRACT

The possible role of increased dietary salinity as a proximate regulator of reproduction in xeric population of golden spiny mice (Acomys russatus) and mesic population of common spiny mice (A. cahirinus) was tested. In the wild, as the dry season progresses, evaporative water loss in the vegetation increases. This leads to increase in particle concentration of plant tissues. Thus, species consuming a plant diet are exposed to increased dietary salinity. Both male and female individuals of A. russatus were subjected to gradually increasing dietary salinity (0.9%, 2.5%, 3.5%, and 5%) while those of A. cahirinus only up to 3.5% for a total period of 8 and 6 weeks, respectively. Urine osmolarity showed a significant increase under 3.5% and 5% salinity in A. russatus and 2.5% and 3.5% in A. cahirinus. Testis mass and spermatogenesis were significantly reduced while uterine mass and vaginal estrus cycles were not affected in A. russatus. None of the parameters was significantly affected in A. cahirinus. Increase in salinity also significantly reduced body mass in A. russatus but not in A. cahirinus. Mass-specific daily digestible energy intake was not significantly affected by increased salinity in both species. Recovery individuals regained body mass quickly and surpassed initial values after four weeks. However, testis mass and spermatogenesis did not show recovery. The results suggest that increase in dietary salinity could be used as a proximate signal to regulate reproduction in A. russatus by halting it in males, as the dry season progresses while such role in the mesic population of A. cahirinus is unlikely.


Subject(s)
Energy Intake/physiology , Feeding Behavior/physiology , Murinae/physiology , Reproduction/physiology , Salinity , Adaptation, Physiological/physiology , Analysis of Variance , Animals , Body Mass Index , Body Temperature Regulation , Desert Climate , Estrus/physiology , Female , Male , Osmolar Concentration , Spermatogenesis/physiology , Testis , Urine
7.
Comp Biochem Physiol A Mol Integr Physiol ; 151(4): 499-504, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18640282

ABSTRACT

Increased dietary salinity suppressed reproduction of the xeric adapted golden spiny mouse, Acomys russatus. Testicular and uterine mass were reduced, suppressed spermatogenesis and vaginal closure were observed. The anti-diuretic hormone, vasopressin (VP), was suggested to mediate such effects. However, increased dietary salinity did not affect reproductive status of a mesic adapted population of the common spiny mouse, A. cahirinus. In the present study, the effect of exogenous VP on the reproductive status and energy balance of both males and females of A. russatus and of a mesic population of A. cahirinus was tested. Vasopressin (Sigma, 50 microg/kg) was injected intraperitoneally in three-day intervals for four weeks. In VP-treated A. russatus, spermatogenesis was significantly suppressed while the change in testis mass did not show significant difference. Both control and VP-treated females lost body mass (W(b)) significantly and the latter also exhibited a higher energy expenditure compared to their male counterparts. VP did not affect reproductive status in both sexes of A. cahirinus. Also it did not have a significant effect on W(b), energy intake, and energy expenditure in this species. Our results support the idea that VP mediates the effects of increased diet salinity on reproduction in A. russatus. The results also reinforce previous knowledge that different physiological systems could be integrated by a single biochemical signal.


Subject(s)
Energy Metabolism/drug effects , Murinae/physiology , Reproduction/drug effects , Vasopressins/pharmacology , Animals , Diet/adverse effects , Estrus/drug effects , Female , Male , Murinae/anatomy & histology , Organ Size/drug effects , Oxygen Consumption/drug effects , Salinity , Sex Characteristics , Spermatogenesis/drug effects , Testis/anatomy & histology , Testis/drug effects , Uterus/anatomy & histology , Uterus/drug effects , Weight Loss/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...