Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nutrients ; 12(11)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207675

ABSTRACT

The gut microbiota and associated metabolites have emerged as potential modulators of pathophysiological changes in obesity and related metabolic disorders. Butyrate, a product of bacterial fermentation, has been shown to have beneficial effects in obesity and rodent models of diet-induced obesity. Here, we aimed to determine the beneficial effects of butyrate (as glycerol ester of butyrate monobutyrin, MB) supplementation on metabolic phenotype, intestinal permeability and inflammation, feeding behavior, and the gut microbiota in low-fat (LF)- and high-fat (HF)-fed mice. Two cohorts (separated by 2 weeks) of male C57BL/6J mice (n = 24 in each cohort, 6/group/cohort; 6 weeks old) were separated into four weight-matched groups and fed either a LF (10 % fat/kcal) or HF (45% fat/kcal) with or without supplementation of MB (LF/MB or HF/MB) at 0.25% (w/v) in drinking water for 6 weeks. Metabolic phenotypes (body weight and adiposity), intestinal inflammation, feeding behavior, and fecal microbiome and metabolites were measured. Despite identical genetic and experimental conditions, we found marked differences between cohorts in the response (body weight gain, adiposity, and intestinal permeability) to HF-diet and MB. Notably, the composition of the gut microbiota was significantly different between cohorts, characterized by lower species richness and differential abundance of a large number of taxa, including subtaxa from five phyla, including increased abundance of the genera Bacteroides, Proteobacteria, and Parasutterella in cohort 2 compared to cohort 1. These differences may have contributed to the differential response in intestinal permeability to the HF diet in cohort 2. MB supplementation had no significant effect on metabolic phenotype, but there was a trend to protect from HF-induced impairments in intestinal barrier function in cohort 1 and in sensitivity to cholecystokinin (CCK) in both cohorts. These data support the concept that microbiota composition may have a crucial effect on metabolic responses of a host to dietary interventions and highlight the importance of taking steps to ensure reproducibility in rodent studies.


Subject(s)
Butyrates/administration & dosage , Gastrointestinal Microbiome/drug effects , Inflammation/chemically induced , Obesity/chemically induced , Animal Feed/analysis , Animals , Body Weight , Diet/veterinary , Diet, Fat-Restricted , Diet, High-Fat , Dietary Supplements , Feces/microbiology , Inflammation/drug therapy , Male , Mice , Mice, Inbred C57BL , Obesity/drug therapy
2.
Virology ; 475: 15-27, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25462342

ABSTRACT

SHAPE technology was used to analyze RNA secondary structure of the 5' most 474 nts of the MHV-A59 genome encompassing the minimal 5' cis-acting region required for defective interfering RNA replication. The structures generated were in agreement with previous characterizations of SL1 through SL4 and two recently predicted secondary structure elements, S5 and SL5A. SHAPE provided biochemical support for four additional stem-loops not previously functionally investigated in MHV. Secondary structure predictions for 5' regions of MHV-A59, BCoV and SARS-CoV were similar despite high sequence divergence. The pattern of SHAPE reactivity of in virio genomic RNA, ex virio genomic RNA, and in vitro synthesized RNA was similar, suggesting that binding of N protein or other proteins to virion RNA fails to protect the RNA from reaction with lipid permeable SHAPE reagent. Reverse genetic experiments suggested that SL5C and SL6 within the nsp1 coding sequence are not required for viral replication.


Subject(s)
5' Untranslated Regions/genetics , Gene Expression Regulation, Viral/physiology , Murine hepatitis virus/metabolism , RNA, Viral/chemistry , Viral Nonstructural Proteins/metabolism , Animals , Mice , Murine hepatitis virus/genetics , Nucleic Acid Conformation , RNA, Viral/metabolism , Viral Nonstructural Proteins/genetics
3.
FASEB J ; 27(10): 3905-16, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23804240

ABSTRACT

Obesity may impair protein synthesis rates and cause anabolic resistance to growth factors, hormones, and exercise, ultimately affecting skeletal muscle mass and function. To better understand muscle wasting and anabolic resistance with obesity, we assessed protein 24-h fractional synthesis rates (24-h FSRs) in selected hind-limb muscles of sedentary and resistance-exercised lean and obese Zucker rats. Despite atrophied hind-limb muscles (-28% vs. lean rats), 24-h FSRs of mixed proteins were significantly higher in quadriceps (+18%) and red or white gastrocnemius (+22 or +38%, respectively) of obese animals when compared to lean littermates. Basal synthesis rates of myofibrillar (+8%) and mitochondrial proteins (-1%) in quadriceps were not different between phenotypes, while manufacture of cytosolic proteins (+12%) was moderately elevated in obese cohorts. Western blot analyses revealed a robust activation of p70S6k (+178%) and a lower expression of the endogenous mTOR inhibitor DEPTOR (-28%) in obese rats, collectively suggesting that there is an obesity-induced increase in net protein turnover favoring degradation. Lastly, the protein synthetic response to exercise of mixed (-7%), myofibrillar (+6%), and cytosolic (+7%) quadriceps subfractions was blunted compared to the lean phenotype (+34, +40, and +17%, respectively), indicating a muscle- and subfraction-specific desensitization to the anabolic stimulus of exercise in obese animals.


Subject(s)
Obesity/metabolism , Physical Conditioning, Animal/physiology , Proteins/metabolism , Sarcopenia/metabolism , Animals , Gene Expression Regulation/physiology , Male , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Zucker , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...