Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 11(48): 11588-11599, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38018444

ABSTRACT

This study reports on the modification of surface plasmon resonance (SPR) chips with molybdenum disulfide-molybdenum trioxide (MoS2-MoO3) microflowers to detect the tuberculosis (TB) markers of CFP-10. The MoS2-MoO3 microflowers were prepared by hydrothermal methods with variations in the pH and amount of trisodium citrate (Na3Ct), which were projected to influence the shape and size of microflower particles. The analysis shows that optimum MoS2-MoO3 hybrid microflowers were obtained at neutral pH using 0.5 g Na3Ct. The modified SPR biosensor exhibits a ten times higher response than the bare Au. Moreover, increasing MoS2-MoO3 thickness results in a higher detection response, sensitivity, and a smaller limit of detection (LOD). Using the optimized material composition, the Au/MoS2-MoO3-integrated SPR sensor can demonstrate sensitivity and LOD of 1.005 and 3.45 ng mL-1, respectively. This biosensor also has good selectivity, stability, and reproducibility based on cross-sensitivity characterization with other analytes and repeated measurements on several chips with different storing times and fabrication batch. Therefore, this proposed SPR biosensor possesses high potential to be further developed and applied as a detection technology for CFP-10 in monitoring and diagnosing TB.


Subject(s)
Biosensing Techniques , Surface Plasmon Resonance , Surface Plasmon Resonance/methods , Molybdenum/chemistry , Reproducibility of Results , Biosensing Techniques/methods
2.
Int J Biomater ; 2022: 9135172, 2022.
Article in English | MEDLINE | ID: mdl-35755268

ABSTRACT

SPR-based technology has emerged as one of the most versatile optical tools for analyzing the binding mechanism of molecular interaction due to its inherent advantages in sensing applications, such as real-time, label-free, and high sensitivity characteristics. SPR is widely used in various fields, including healthcare, environmental management, and food-borne illness analysis. Meanwhile, kidney disease has grown to be one of the world's most serious public health problems in recent decades, resulting in physical degeneration and even death. As a result, several studies have published their findings regarding developing of reliable sensor technology based on the SPR phenomenon. However, an integrated and comprehensive discussion regarding the application of SPR-based sensors for detecting of kidney disease has not yet been found. Therefore, this review will discuss the recent advancements in the development of SPR-based sensors for monitoring kidney-related diseases. Numerous SPR configurations will be discussed, including Kretschmann, Otto, optical fiber-based SPR, and LSPR, which are all used to detect analytes associated with kidney disease, including urea, creatinine, glucose, uric acid, and dopamine. This review aims to show the broad application of SPR sensors which encouraged the development of SPR sensors for kidney problems monitoring.

SELECTION OF CITATIONS
SEARCH DETAIL
...